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ABSTRACT

This investigation is concerned with the optimization of

arch structures. The DOT optimization code is used to minimize

the volume of arch structures which are constrained by limits

on stress, design geometry, and section dimensions. Modeling

the arch structure by a series of bar-beam elements, the

finite element method is used to compute element stresses. The

DOT optimization code selects section dimensions to prevent

failure due to element stresses exceeding the material yield

stress. Specifically, through coordinate transformations

between local element coordinates and global system

coordinates the element stiffness matrices transform into the

global stiffness matrix. The resulting system matrix equations

are then solved for the system degrees of freedom, that is,

displacements and slopes. The system degrees of freedom, in

turn, are transformed back to the element level to compute the

internal forces and moments and hence, the stresses. Results

are presented for a number of cases with regard to

optimization scheme and stress analysis.
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I . INTRODUCTION

A. BACKGROUND

Over 5,000 years ago, evolution of the post and lintel

structures of the stone age gave rise to the arch. Highly

regarded for its graceful shape and design suitability, the

simple arch structure has been applied to engineering and

architectural designs ever since. The ancient Roman Coliseum

and aqueducts, great cathedrals of the Middle Ages, and

railway bridges of modern history are just a few of the many

examples of structures comprised of arches standing today

(Figure 1.1) . Throughout its history, engineers and architects

have labored to improve the design of the arch in order to

enhance the overall design structure. This desire for

perfection has led engineers to devise a rational, directed

design procedure and hence, the concept of optimization was

created.

The advent of the computer era has lead to 20 years of

extensive development in the use of numerical optimization

techniques. These techniques offer a logical approach to

design decisions where intuition and experience previously

prevailed. Coupled with trends toward material and cost

efficiency, numerical optimization has prompted considerable

research in the field of automated design [Ref. 1]. As



(a)

(b)

(c)

Figure 1 .

1

Photos by Mrs

(a) The Coliseum
(b) Firth of Forth Railway Bridge
(c) Isernia, Italy, railway bridge

P . Menzies and CDR D . C . Warner



a step in design optimization of structures, the arch has been

the subject of numerous optimality studies to enhance

applicability in engineering and architectural designs.

One such study was performed by Farshad in 1976

[Ref. 2]. Using calculus of variations, he derived

optimality conditions for nonlinear partial differential

equations for hinged-hinged arches. The total potential energy

of the system, augmented with several objective functions via

Lagrange multipliers, was minimized with respect to design and

state variables to achieve equilibrium and optimality. The

nonlinear systems of equations for optimal thrust, minimum

length of the arch, and minimum volume were presented but not

solved.

In 1980, Rozvany et al . [Ref. 3] used the Prager-

Shield criteria to optimize statically determinate arches. His

x arch' consisted of two inclined funicular frame beams

ridgedly interconnected with a concentrated load applied at

the joints. In the optimal x arch' only bending or axial forces

develop depending on the ratio of 4L/D, where L is the span of

the structure and D is the depth of the cross section. Ratios

greater than eight to one produced axial forces only and the

optimal shape has a height of half the span. Ratios smaller

than eight to one develop only bending and the optimum

structure is a straight beam. In each case, the width of the

beam segments for the optimal *arch' varied linearly from the

hinged support to the axis of symmetry.



That same year, Lipson et al. [Ref. 4] used the

^complex' method to optimize parabolic arches subject to

uniform loading. His *arch' was comprised of equal length

straight beam sections of thin walled rectangular tubes.

Maintaining constant depth and width for each segment, the

vertical and horizontal wall thicknesses determined the arch

shape which was optimized for minimum total weight. An arch

with a rise of 0.342 times the span length proved to be the

optimum.

In 1988, Ang et al. [Ref. 5] solved the arch

optimization problem by parametricing the unspecified arch

axis using spline functions and employing a smoothing function

to approximate the non-smooth objective function. The x arch'

was considered to be a aplastic' design of rectangular cross

section subject to bending and axial compression. Three types

of boundary conditions were imposed, simply supported-simply

supported, clamped-clamped, and simply supported-clamped. The

optimum shape of the arch is claimed to be a parabola with a

rise of 0.433 times the span length. Apparently, there is some

disagreement between these results and those previously noted.

In addition to arch optimization studies, Ding and Esping

[Ref. 6] solved the minimum weight design problem for

frame structures when stress and displacement constraints are

considered. Using dual numerical methods, seven cross-

sectional shapes were treated by approximating the stresses

with pseudo and virtual load techniques. Results were



presented for a beam clamped at both ends, a portal frame, a

2X5 grillage, and a helicopter tail boom structure. Although

Ding and Esping' s investigation does not specifically solve

for arch structures, the approximations used are completely

detailed with convincing results.

In December of 1990, Charles Scott McDavid of the Naval

Postgraduate School presented his thesis, "Weight Optimum Arch

Structures, " which optimized circular arches subject to

various loadings and end conditions. Specifically, he

optimized arches segmented into rectangular boxes that varied

in width only. Through his research he concluded that a

bar/beam element model is a viable technique for the

approximation of arch structures, and that an arch structure

that is more statically indeterminate is more efficient under

identical loading. Additionally, he proposed possibilities for

future research which includes varying both the height and

width dimension, the major thrust of this investigation.

B. PROBLEM DEFINITION

In order to provide an in depth study, each of the cited

investigations began with a problem definition and specific

assumptions about the type of arch to be considered. For this

investigation, the arch is defined as a structure of constant

curvature (i.e., circular arches) which when supported at both

ends and loaded laterally develops perpendicular reactions.

This is intended to eliminate thick walled curved beams and



straight beams which develop virtually no perpendicular

reactions when loaded laterally. Additionally, the cross-

section dimensions are small relative to the radius of

curvature and therefore the centroidal and neutral axes are

assumed to coincide. Without the thin depth assumption,

complications arise in the calculations of the displacements

and the slopes because the arch no longer behaves as predicted

by the beam equilibrium equation:

(EIv" )"=P
y
(s) (1.1)

and the bar equilibrium equation:

(AEu' )' =-Px (s) (1.2)

where the prime superscript notation denotes differentiation

with respect to the independent variable, s, and

E = Young' s Modulus
I = Cross-sectional Moment of Inertia
v = Lateral Displacement
P

y
= Lateral Loading

A = Cross-sectional Area
u = Axial Displacement
P x

= Axial Loading
s = the Independent Variables

In order to facilitate the development of a finite element

code to approximate the local displacements, the arch is

approximated by a series of straight segments. From the local

displacements, the virtual load techniques, as described in

the Ding and Esping paper, are applied to determine the

internal psuedostresses . Once the stress distribution is

determined, the arch volume is minimized to a structure that



maintains the developed stresses below the predefined maximum

allowable stress.

The thrust of this investigation is to minimize the total

weight of a linearly elastic, isotropic, and homogeneous arch

under a variety of loadings and end conditions. Optimization

in this investigation refers to the variance of the cross-

sectional dimensions (that is, the design variables) to obtain

optimum least weight structures. Design Optimization Tool

(DOT) software [Ref. 7] is used to perform the

optimization subject to prescribed constraints on the design

variables as well as on the stress limitations. The objective

is to minimize the total volume of the arch while maintaining

stresses below the yield strength of the arch material. The

intent of this study is to provide direction and guidance on

which further research for weight optimization may be

developed.



II. PROBLEM FORMULATION

A. PROBLEM STATEMENT AND ASSUMPTIONS

As noted in the introduction, the purpose of this

investigation is to optimize arch structures to form a

foundation upon which further research can be based. These

arch structures, subject to specified loadings and end

conditions, vary in cross sectional geometry to minimize the

weight. In order to limit the scope of this study,

approximations and specific assumptions are made as follows:

• The arch maintains a constant radius of curvature.

• The arch is approximated by a series of straight segments
of a solid rectangular cross sectional geometry.

• Cross section design is restricted to ensure the
applicability of beam and bar equilibrium equations (1.1
and 1.2) .

• To prevent failure the internal stresses developed due to
the loading must not exceed the yield strength of the
material

.

• The arch structure is composed of a linearly elastic,
isotropic, homogeneous material.

To begin the design optimization process, the arch

structure is approximated by contiguous straight line

segments. Each segment is modeled by a bar-beam structure

connects to the adjacent segment at a point defined as the

nodal point. At each nodal point, the cross section base and



height dimensions are selected as the design variables. From

this model, the optimization problem can be formulated into

objective and constraint functions which are functions of

these design variables.

B. MATHEMATICAL MODEL

Due to the complex nature of this problem, the constant

radius arch structure is modeled by a series of straight

contiguous elements where the arch radius of curvature, R, and

the number of elements used to approximate the arch, NEL, is

specified. (Figure 2.1) For simplicity, the length of each

element is constant such that:

l-Qr/ nel

where represents the subtended arc of the arch.

NEL MEL+1

Figure 2.1 Arch Structural Model



At each nodal point, there exists a base and height

dimension such that the cross sectional dimensions from one

element to the adjacent element maintains smooth piecewise

continuity. (Figure 2.2) The resultant element shape is that

of a three dimensional trapezoid whereby the volume is

calculated by multiplying the average base and height with the

length of the element. In mathematical terms, the volume of

the ith element is calculated as follows:

Volume ( i ) = Baw ( i ) * Haw (i) *L (2.1)

where B a

B
H
L
i

(B (i) + B (i+l))/2
(H (i) + H (i+l))/2
the Nodal Base Dimension
the Nodal Height Dimension
the Element Length
the ith Element

(2.2)
(2.3)

v
Figure 2.2 Arch Elements

10



Defined in the problem statement, the optimal arch is

achieved by varying the cross sectional dimensions, the base

and height, in order to minimize the weight. Thus the nodal

base and height dimensions are the design variables for which

the objective function is defined.

C. OPTIMIZATION PROBLEM

The objective of this study is to minimize the weight of

an arch structure while maintaining a stress distribution

which does not exceed the yield strength of the material.

Additionally, other constraints on the design variables are

imposed. Since the arch is composed of a homogenous material,

the weight of the arch is directly proportional to the volume

of the arch. Thus, the objective of this investigation is

satisfied by minimizing the total arch volume. The total arch

volume, Vtot, is the sum of the elemental volume, v(i). Thus

in mathematical form, the objective function is as follows:

MIN1^ v (i)\ (2.4)

where the elemental volumes, v(i), calculated by Equation

(2.1), is summed for all elements to compute the total arch

volume.

In keeping with the assumptions made in the problem

statement, the objective function is constrained in order to

impose practical and important physical restriction on the

11



problem. Properly defined, the constraints are used to avoid

undesirable behavior such as yielding, to ensure validity of

the governing equilibrium equations, and to provide a

realistic design. For this study, the constraints fall into

three categories, strength criteria, geometric limitations,

and side constraints.

First, for specified loadings and end conditions, the

optimized arch must not x fail by yielding.' Assuming the arch

material to be linearly elastic, the applied loading must not

cause the structure to exceed the elastic limit of the

selected material. Therefore, the internal stresses developed

must remain below the yield strength of the material.

Mathematically, the strength criteria is as follows:

G (i) <Sy

or in normalized form:

(O (i) / Sy ) -1.0 < 0.0 (2-5)

where o(i) is the maximum stress developed at the ith nodal

point of the arch and Sy is the yield strength of the arch

material selected by the designer. Unfortunately, the stress

distribution, in terms of the design variables is not readily

available. However, using the beam and bar equilibrium

equations (1.1 and 1.2), a finite element scheme based on the

model can be developed to determine the arch's displacements

and slopes due to a given loading. Knowing how the

12



displacements and slopes change throughout the arch, the

stresses at the nodal points can be calculated.

Secondly, limits must be imposed on the cross sectional

geometry in order to ensure applicability of the bar and beam

equilibrium equations. Limiting the cross section base and

height dimensions relative to one another prevents the

structure from becoming either a shell-like or deep curved

beam structure. To maintain the geometry of the arch, the

following conditions are imposed:

B (i) -3.0 *H(i) < 0.0 (2.6)

and

H (i) -10.0 * B (i) <0.0 (2.7)

Finally, the side constraints are imposed to ensure a

realistic solution. The arch is a physical object that must

have a realistic finite cross sectional area; however, these

section dimensions must also remain small relative to the

radius of curvature by definition of the arch. Thus, the side

constraints for the base and height dimensions are as follows:

0.03in. <B(i) <6.0in. (2.8)

0.03in. <H(i) < 6.0in. (2.9)

In the future, additional constraints should be considered

such as global buckling and local crippling.

13



III. OPTIMIZATION ANALYSIS

To perform the computer optimization, the Design

Optimization Tools (DOT) software package is used due to its

availability, user friendliness, and reputation. DOT, a

FORTRAN 77 optimization software package available from VMA

Engineering, uses numerical search methods to seek a minimum

value of one function, the objective, subject to the limits of

others, the constraints [Ref. 7]. DOT has two methods for

iteratively solving constrained optimization problems, the

Modified Method of Feasible Directions and the Sequential

Linear Programming Method.

A. MODIFIED METHOD OF FEASIBLE DIRECTIONS

Modified Method of Feasible Directions is a numerical

method that deals directly with nonlinear problems. For this

method, a search direction vector, _S, is first found. The

design point is then moved in this direction to update the

design variable vector, X, according to the equation:

x =x + crs (3.1)—g —g-1 —

g

where the scaler quantity a* defines the distance moved in the

S. direction, and q represents the iteration number.

14



For an initial design, say X~, the design is moved in the

direction of the steepest descent until a constraint is

encountered.

TKV6 OPTIMUM

TT

Modified Method of Feasible Directions: The
Search Direction

O
Figure 3 . 1

Having encountered the constraint boundary, a new search

direction is found by solving the subproblem:

Maximize

:

MAXIMIZE: £'

£

(3.2)

15



Subject to:

A£< (3.3)

(3.4)

where

Si

IP J

'

<

R =
>

1

.

A-

Vrg:
(x)

VTg2
(x)

VT
g,. (x)

VTF(x)

(3.5)

(3.6)

(3.7)

The search direction, S., will follow the constraint yet allow

the design to leave a constraint boundary if the objective

will reduce farther. In general, the form for inequality

constraint problems is:

16



Maximize

:

-VF(x) • S (3.8)

Subject to:

Vg^x) • s<l jeJ (3.9)

S-5<1 (3.10)

When the search direction is away from a currently active

constraint and the scaler product of the gradient of each

critical constraint with the S. vector is less than zero, the

constraint is omitted from the set of active constraints. If

S. is the null vector or numerically small, the optimization

process is terminated because the Kuhn-Tucker conditions for

optimality have been met.

B. SEQUENTIAL LINEAR PROGRAMMING

The second numerical method, Sequential Linear Programming

(SLP) , linearizes nonlinear objective and constraint functions

and then obtains a solution using linear programming methods.

Once the approximate solution is found, the functions are

linearized about the new design point and the a linear

programming problem approximated and solved. By repeatedly

linearizing and solving the resulting problem, a precise

solution is achieved.

In general format, the nonlinear functions are linearized

via a first-order Taylor series expansion as follows:

17



Minimize

:

F(x) "F(XJ + VF(X
o

)
• 6X (3.11)

Subject to:

?j(x) -9j(X ) ^gjUj • 6x<0 j = l,jn (3.12)

where

8x = X-^ (3.13)

and the zero subscript identifies the point about which this

Taylor series expansion is performed. At the initial design,

Xe, the objective and constraints are linearized to give

straight line representations of the functions.

Typically, this method converges to the optimum solution

with fewer iterations than the previous method mentioned.

However, as seen in Figure 3.2, the optimum of the

approximated linear problem is infeasible (i.e., a design that

violates some or all of the constraints) . Additionally,

certain linearizations produce unbounded linear problems.

However, imposing move limits on the linear approximation

helps ensure that the optimum will eventually be reached.

C. DOT PROGRAM PARAMETERS

For both numerical methods, there are several parameters

that can be adjusted within DOT in order to *fine tune' the

program for a specific problem. Fine tuning is a process in

which the program parameters are internally adjusted to
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optimize the optimizer performance. With proper tuning, the

optimization process can be designed to remain within

specified tolerances and operate more efficiently. A complete

listing of all the DOT parameters is contained in Appendix A.

However, for the purpose of this investigation, only the

constraint boundaries, auto scaling, and termination tolerance

parameters were tuned to enhance optimization performance.

[Ref. 7]

First, for constrained optimization, the constraint

boundary must be established. Mathematically defined, the

constraint is considered active if its numerical value is

between the value of CT and CTMIN, and violated if its

numerical value is greater than CTMIN. By using a narrow band

to approximate the constraint function, the optimizer is less

likely to exceed convergence criteria without achieving an

optimal design. In the realm of design, CTMIN is of particular

concern. Principally, it is a small positive number that

controls how far the design can deviate from the constraint

boundaries and still be considered a feasible design. In

theory, CTMIN can be reduce to zero to avoid any constraint

violations, however, it is not practical due to the large

number of iterations and computer expense required.

In addition, it is normally considered good engineering

practice to normalize design variables and nondimensionalize

basic parameters [Ref. 1]. For optimization, variables are

scaled to affect normalizing by evaluating the diagonals of
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the Hessian matrix of the objective and constraint functions.

As the optimization proceeds, reevaluation is sometimes

necessary to rescale the variables. The DOT parameter ISCAL

may be selected to rescale the design variables over an

interval or eliminate the scaling function all together.

Unfortunately, the DOT manual indicates that there is no

established theory for scaling. Scaling is therefore a

function of trial and error.

Last, the termination criteria also has a major effect on

the efficiency and reliability of the optimization process.

Termination criteria is established so that the design process

is stopped when the number of iterations exceeds a specified

limit. DOT parameters ITMAX and JTMAX specify the maximum

number of iterations allowed for the Modified Method of

Feasible Directions and the SLP method respectively. This

ensures that the program will not iterate indefinitely.

Furthermore, the progress of the optimization is checked for

convergence. Design convergence is achieved when the change in

the value of the objective function from one iteration to the

next approaches zero. The DABOBJ parameter is a specified

tolerance for which the maximum absolute change in the

objective function between iteration is numerically small.

Additionally, ITRMOR and ITRMST are parameters which specify

the number of consecutive iterations for which the design

change is less than DABOBJ for Modified Method of Feasible

Directions and the SLP method respectively.
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IV. STRESS ANALYSIS

The objective of this investigation is to minimize the

total weight (volume) of a load bearing arch subject to

specified constants. To obtain an optimal structure, DOT is

interfaced with an analysis program which computes the values

of the objective and constraint functions in terms of the

design variables, specifically the cross sectional dimensions.

Since the strength constraint requires that the stresses at

any point do not exceed the yield strength of the arch

material, the stress distribution over the domain of the arch

must be known. However, as indicated in Chapter II, the stress

distribution is not readily available in terms of the cross

sectional dimensions. Therefore the following stress

development is pursued for optimization.

A. STRESS DEVELOPMENT

For this study, the strength constraint requires that the

applied load will not cause the arch to fail by yielding.

Therefore, the internal stresses developed must remain below

the yield strength of the material. For this study, the

stresses considered are composed of normal stresses due to

bending moments and axial forces where the total normal stress

is the algebraic sum of these components expressed as follows:
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o = oh + o. (4.1)

where

a,

total normal stress
the normal stress due to bending
the normal stress due to axial force

^^ o;*^

Figure 4 . 1 Normal Stresses Due to Bending Moments and Axial
Forces

Shear stresses may also develop within the arch from shearing

forces; however, the side constraints limit the geometry such
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that these stresses are negligible. (See Appendix B for the

complete justification for Shear stress omission.)

To compute the two normal stress components, the arch is

sectioned and approximated by straight frame elements. Thus,

the stresses can be determined for each element endpoint (or

nodal point) in order to establish the stress distribution.

Each element is considered to behave as both a tapered beam,

to calculate the stresses due to bending, and a tapered bar,

to calculate stresses due to axial forces.

First, for a straight beam segment, the maximum normal

stress due to bending, hereafter referred to as bending

stresses, is defined by the following equation:

where c is the distance from the neutral axis to the point

furthest from the neutral axis. The moment, M, at a section is

calculated by:

M-EIv" (4.3)

resulting from the beam equilibrium equation (1.1). With

substitution and simplification, Equation (4.2) becomes:

Ob
= ECv" (4.4)

In the same manner, the normal stress due to axial

behavior is determined. For a bar element, the normal stress

due to axial forces, hereafter referred to as axial stresses,

is defined by the equation:
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<* =- (4.5)a A

where A is the cross section area and the axial force, F, is

calculated by:

F = AEu' (4.6)

resulting from the bar equilibrium equation (1.2). Again,

substituting and simplifying, Equation (4.5) becomes:

Ga
= Eu' (4.7)

Final substitution into Equation (4.1) results in an

equation for total normal stress as follows:

G
n
= E(cv" + u') (4.8)

where Young's Modulus of elasticity, E, is a function of

material selection, the distance from the neutral axis to

extreme fiber, c, is a function of cross section height, and

u' and v" are the first and second derivatives of axial and

lateral displacements respectively. Using the Galerkin Finite

Element Method, approximate values for the axial and lateral

displacements can be determined at element endpoints. From

these values, the stress distribution is computed and the

optimization process can proceed.

B. THE FINITE ELEMENT BEAM EQUATION DEVELOPMENT

The Galerkin Finite Element Method (FEM) is an

approximation method which transforms a linear differential
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equation into a system of linear algebraic equations. Using

the beam equilibrium equation (1.1), approximate lateral

displacements for the arch can be determined at the system

nodal points. For this method, a family of hermite cubic shape

function which possess the Kronecker Delta property, are

introduced in order to maintain the necessary function and

slope continuity for the fourth order beam equation. An

approximate solution, V, for displacement, V, is formed as

follows

:

v ~V=QTy (4.9)

where v is the exact solution of the beam equation in

continuous space, v is the approximate solution in discrete

space, Q 7 is the transpose of a column vector of the cubic

shape functions, and V is the vector of lateral displacements

and slopes.

After the approximation is formulated, the next step in

the Galerkin method is to form the residual, R, in the

following format:

R = £(V) -Py
(s) (4.10)

where p y
is the lateral excitation force and S£ denotes the

differential operator which in the case of the beam

equilibrium equation is defined by:

S£(v) = [EI(v") ]" (4.11)

With substitution, the residual becomes:
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R= [£I(OV)"]" -Py
(s)

From the residual, the Galerkin Equations are formed:

(&(R)ds = 0_ (4.13)
D

where is the null vector. Further substitution for R into

the Galerkin vector equation results in :

(j2 [EI(£tv)" }"ds- fgp
y
(s)ds = 0_ (4.14)

To solve the Galerkin Equation, integration by parts is

performed twice which yields:

Q [ EI (Q
Tv) ")'\ B -&EI (Q

Tv) "
| B

(4.15)
+ (g'EI (£

Tv) " ds - [Qpy ( s) ds = 0.

where
| B denotes evaluation of these vectors at the boundary

points of the structure. Recognizing that the lateral

displacement and slope vector is constant, Equation 4.15 is

rewritten as:

Q [ EI (Q
T

)
"

] >v\ B
-£EI (Q

t
) "v\ b

(4.16)
+

~D

(g'EI(Q_ T)"dsv-(Qp
y
{s)ds = 0.

From the beam equilibrium Equation (1.1), the shear, V, is

defined by:
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V=EIv"' (4.17)

and Moment, M, by:

M=EIv" (4.18)

Thus, the boundary term load vectors are defined by:

V = 2[EI(Q T)"]'v\ B
(4.19a)

and

M = gEI(£ T)"v\
B

(4.19b)

Additionally, for convenience a system stiffness Matrix, KB
,

is defined by:

KB = (g'EI (2
T

) "ds (4 . 19c)
D

and a system Force vector, F b
, by:

Fb = (gpy (s)ds
(4.19d)

D

Substitution of Equations (4.19 a through d) into Equation

(4.16) results in the following system of linear algebraic

equations

:

Z\b-E\b*^Z~E!°"1 (4.20)

Further simplification is possible by defining Fb as the load

vector of internal and external applied lateral loads by:

FB =Fh +M\ B -V\ B
(4.21)

Thus, Equation (4.20) reduces to:
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KBv = FB (4.22)

where the global or system bending stiffness matrix, KB
, is

constructed from the union of all the elemental bending

stiffness matrices k bl and the global bending force vector,

Fb
, is constructed from the union of all the elemental bending

force vectors, f_
bl

.

C. THE FINITE ELEMENT BAR EQUATION DEVELOPMENT

In a similar manner to the beam equation, the Galerkin

Finite Element Method is applied to the bar equilibrium

equation (1.2) to approximate the axial displacements at the

endpoints of a bar element. However, the bar equation is only

a second order linear differential equation. Therefore, a

family of linear shape functions which posses the Kronecker

Delta property, are used in order to maintain the necessary

function continuity only. An approximate solution, 0, for

axial displacement, u, is formed as follows:

u=a = G Tu (4.23)

where u is the exact solution of the bar equation in

continuous space, is the approximate solution in discrete

space, G T is the transpose of a column vector of the linear

shape functions, and u_ is the vector of axial displacements.

After the approximation is formulated, the next step in

the Galerkin method is to form the residual, R, in the

following format:
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R=g(u) +px (s) (4.24)

where p x is the axial excitation force and ££ denotes the

differential operator which in the case of the bar equilibrium

equation is defined by:

S£(u) = [AE(u)']' (4.25)

With substitution, the residual becomes:

R=[AE{G Tu)']' +px (s) (4.26)

From the residual, the Galerkin Equation is formed:

JG(R)ds = 0_
(4.27)

D

where 0_ represents the null vector. Further substitution into

the residual equation results in :

(G[AE{G Tu)']'ds+(Gpx {s) ds = 0_ (4.28)

Unlike the beam equation development, only single

integration by parts is performed to solve the Galerkin

Equation. This results in:

AEG(G Tu)'\ B
- (&[AE{G7u)')ds +JGpx (s) =0. (4.29)
D D

where
| B represents evaluation at the boundaries of the

structure. Recognizing that the axial displacement vector is

constant, Equation (4.29) is rewritten as:
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G(AEG T)'u\ B -JG^ [AE(G T']dsu+JGpx (s) =0_ (4.30)
D D

From the bar equilibrium Equation (1.2), the axial force, F,

is defined by:

F = AEu' (4.31)

Thus, the boundary term load vectors are defined by:

P = AEG(G T)'u\ B
(4.32a)

Additionally, for convenience a system stiffness Matrix, KA
,

is defined by:

KA = fg [AE(G T]ds (4.32b)
D

and a system Force vector, Fa
, by:

Ka=JGpx (s) (4.32c)
D

Substitution of Equations (4.32 a through d) into equation

(4.30) results in the following system of linear algebraic

equations

:

P-KAu+Fa = 0_ (4.33)

Further simplification is possible by defining FA as the load

vector of internal and external applied lateral loads by:

FA = Fa +P (4.34)

Thus, Equation (4.33) reduces to:
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KAu = FA (4.35)

here the global or system axial stiffness matrix, KA
, is

constructed from the union of all the elemental axial

stiffness matrices k al and the global axial force vector, F*

,

is constructed from the union of all the elemental axial force

vectors, fai
.

D. THE ELEMENTAL STIFFNESS MATRIX

The global Galerkin FEM Equations (4.22 and 4.35) are

constructed from the union of elemental axial and bending

stiffness matrices, k al and k bi and axial and lateral force

vectors, fai and fbi
. For the beam element, the elemental

degrees of freedom in which the elemental forces act are shown

in Figure (4.2) .

LOCAL
NODE 2

LOCAL
tfOfcE 1

Figure 4 . 2 Beam Element - Degrees of Freedom

32



Thus, the stiffness matrix, k bi for bending results in a 4 X 4

matrix of the form:

k bi =

, bi v bi v bi ,bi
*11 K 12 K 13 *14

. bl ,bl .bi v bi
*21 *22 *23 *24

,bl v bl ,bl ,bl
K31 *32 -^33 *34

v bi v bi ,bi .bl
•K41 *42 A 43 *44

(4.36)

For the bar element, the elemental degrees of freedom in

which the elemental forces act are shown in Figure (4.3).

Figure 4 . 3 Bar Element - Degrees of Freedom

Thus the stiffness matrix, k al
, for axial force results in a

2X2 matrix of the form:
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k al =
*11 -^12

^21 *22

(4.37)

To simplify, the elemental degrees of freedom are

redefined for bar-beam elements as depicted in Figure (4.4).

Figure 4 . 4 Bar-Beam Element - Degrees of Freedom

This results in a combined 6X6 stiffness matrix, k 1
, of the

form:
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k1 '

k ai k ai

k bi k blK 12
k bl

A 14

k bl
K 2 \

k blK22 k biK22 k blA 24

k al k alK2 2

k bi
*31 k blK 12

k bl
^33 ^34

k bl
X 41 k biA42 k bl

A 43 k bl
A 44

(4.38)

The elemental displacements and forces follow suit and are

defined as follows:

The elemental displacements vector, b 1 ' , becomes:

(8 i ') T = <6f,82
i '

/ 8f, 8J, 5f,5f > (4.39)

where for the ith element

8,
j

85
J

6/

the axial displacement at local node 1

the lateral displacement at local node 1

the beam slope at local node 1

the axial displacement at local node 2

the lateral displacement at local node 2

the beam slope at local node 2

The elemental force vector, f 1 ', becomes:

where for the ith element

(4.40)

fi
1 '

fs
1 '

J

6

5
f 1

the axial force at local node 1

the lateral force at local node
the moment at local node 1

the axial force at local node 2

the lateral force at local node
the moment at local node 2

Thus, the combination of the Galerkin Beam and Bar Equations

for each element simplifies to:
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fci'Si'afi' (4.41)

where the elemental stiffness matrix, k 1 '
, in terms of known

quantities becomes:

*'- (4.42)

AE/J, -AE/^

12EI/H 2 SEl/fi -12£J/«j 6EJ/^

6EI/U 2 4El/6i -6£J/^ 2EJ/J,

-A£'/«i AE/td

-12El/ti -6El/?i 12EJ/«i -6El/fi

6£J/«j 2£J/«i -6El/fi AEl/tt

It should be noted that the bar and beam have uncoupled

behavior.

E. COORDINATE TRANSFORMATION OF THE ELEMENTAL SYSTEM
OF EQUATIONS

For curved structures such as the arch, each element has

a unique orientation with respect to the global x and y axes.

Therefore, to solve the global system of equations, the

elemental Galerkin Equation (4.41) is transformed from local

to global coordinates. The horizontal and vertical axes of the

arch are chosen for a global reference coordinate system.

Figure (4.5) depicts the angle the i
th element makes with the

horizontal x-axis as 0^, and the compliment angle, Pi, as the

angle the i
th element makes with the vertical y-axis.

From these definitions, the local displacements and

forces, marked by a prime to indicate element degree of

freedom are defined in terms of the reference coordinates axes

as follows:
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Figure 4.5 Bar-Beam Element
Transformation

Degrees of Freedom
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and

5/

5/

6/

fi
1

f-/

JV

*V

fY

6/ cos ^aj + 5/ cos fPj

-5/ cos ($.) + 8/ cos (a± )

8/ cos (a.) + bs
1 cos CP^

-8/ cos ($ 2 ) + 8 5

i cos (a x )

f-J- cos (aj + f2
i cos fPj

-fj 1 cos cPj + f/ cos (a. x )

f/

f/ cos (a± ) + f5
J cos (jjj

-f/ cos (p,; + ry cos (a ± )

fe
1

(4.45)

(4.46)

Accordingly, a transformation matrix, T1
, for the ith element

becomes

:

r j =

cos(aj) cos(p
i )

-cos (p.) cosfa^ 10
cos (c^) cos(p

i )

-cos(p
i ) cos(a

i )

1

(4.47)

which reduces the notation of Equations (4.45) and (4.46) to

8 i; = ns (4.48)

and



f^P'f (4.49)

where

(b i
)

7 = <Si,bi,blbi,bi,bi> (4.50)

if*)
T = < ft, ft, ft, ft, ft, ft > (4-51)

Thus, the transformed elemental stiffness equation becomes:

k'TW^Tfft (4.51)

by substituting Equations (4.48) and (4.49) into Equation

(4.41) .

By multiplying both sides of Equation (4.52) with the

inverse of the transformation matrix, T 1
, an orthogonal matrix

(i.e., r : =rT
) , yields:

(V 1
)

7

^
1 ' {T^b^f 1 (4.53)

where the elemental stiffness matrix, kj- , in terms of the

global x and y coordinates is defined by:

k 1 * (H) T* i ' (£*) (4.54)

F . SOLUTION

Recall from the Beam and Bar FEM development that the

global system of equations result from the union of the

elemental stiffness matrices and force vectors such that:
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KA = F (4.55)

where the global or system force vector, F, is the union of

the transformed local force vectors, f i
, and the global or

system stiffness matrix, K, is the union of transformed local

stiffness matrices, k 1
. Thus, Equation (4.55) is solved for

the global displacement vector, A.

These global horizontal, vertical, and rotational degrees

of freedom are transformed back to local axial, lateral, and

rotational displacements by the same transformation

: elationships of section E (Equations 4.45 and 4.46). From

these local displacements, the virtual loads at the element

endpoints are computed from Equation (4.41):

k^'B^'f1 '

(4.56)

where the elemental stiffness matrix, kj' , is defined by

Equation (4 .42) .

The node point virtual loads, f_
1

'

, equate to the virtual

axial and lateral forces, and bending moments located at the

endpoints of each element. From Equation (4.2) and (4.5),

bending and axial stresses are calculated. For continuity, the

stresses of internal global nodal points are averaged since

physically, local nodal point 2 of the i
th element is the same

point as local nodal point 1 of the i
th + 1 element. Therefore,

using Equation (4.1), the normal stresses can be determined

for each global nodal point.
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V. PROGRAM DESCRIPTION AND VALIDATION

From the development of Chapters II and IV, a VAX Fortran

77 Code for FEM analysis of an arch was written to interface

with the DOT software package. The main program, ARCH_OPT .FOR,

and associated common program, ARCH_COM.FOR, are contained in

Appendix C. Briefly, ARCH_OPT.FOR opens and reads an input

file, ARCH_IN.DAT, before it is divided into several

subroutines that perform the FEM analysis. Table 5.1 lists the

input data fields required of ARCH_IN.DAT along with a brief

description of each.

TABLE 5.1 ARCH IN. DAT FIELD PARAMETERS

Input File
form:

Parameter

ANGLE

RADIUS

YOUNG

YIELD

NEL

ANGLE, RADIUS, YOUNG, YIELD,
NEL, METHOD, IPRINT,
DV1BG, DV1LO, DV1UP,
DV2BG, DV2LO, DV2UP,
CLAN, FX, FY, FM, FA,

OPTDCS, ITERATE, PRCSN,
BX1, BY1, BM1, BX2, BY2, BM2,

LABEL

Description

The angle from to 359 degrees subtended by the arch
structure

.

The length of the arch radius of curvature. (The dimension
is arbitrary, however all remaining inputs must be
consistent .

)

Young' Modulus of Elasticity for the arch material.

The yield strength of the arch material. If a factor of

safety is desired, it should be accounted for prior to
input

.

An integer number of elements, from 1 to 32, used to
approximate the arch structure.
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METHOD The optimizer method to be used.

METHOD = or 1 : Modified Method of Feasible Directions

METHOD = 2: Sequential Linear Programming

IPRINT On screen print control parameter. Integers from to 5

indicate increasing screen printout.

DV_BG The best guess for design variable 1, the base dimension,
or 2, the height dimension. Nodal point dimensions are
initialized to the best guess value, thus establishes the
optimization starting point.

DV_LO The lower limit or side constraint for design variable 1,

the base dimension, or 2, the height dimension.

DV_UP The upper limit or side constraint for design variable 1,

the base dimension, or 2, the height dimension.

CLAN An integer from 1 to NEL + 1 that indicates the node at

which the concentrated load is to be applied.

FX The magnitude of the concentrated load in the horizontal
direction applied at node CLAN.

FY The magnitude of the concentrated load in the vertical
direction applied at node CLAN.

FM The magnitude of the concentrated moment applied at node
CLAN.

FA The magnitude of the uniformly distributed load in the
radial direction which spans the entire length of the arch.

OPTDCS Optimization option

OPTDCS = 1: Optimize the dimensions of the problem.

OPTDCS =2: Do not optimize the problem. Based on the initial
design, calculate the stress distribution only.

ITERATE The number of iterations performed. The resulting optimized
variables are re-entered into DOT and the optimization
performed ITERATE times to effect an iteration.

PRCSN Computer precision used by the equation solver.

PRCSN = 1: single precision

PRCSN = 2: double precision
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BX_ Boundary conditions for horizontal displacement at 1, the
first node of the arch, node 1, or 2, the last node of the
arch, node NEL + 1.

BX_ = 0: The node is free to move horizontally.

BX_ = 1: The node is not free to move horizontally.

BY_ Boundary conditions for vertical displacement at 1, the
first node of the arch, node 1, or 2, the last node of the
arch, node NEL + 1.

BY_ = 0: The node is free to move vertically.

BY_ = 1: The node is not free to move vertically.

BM_ Boundary conditions for the beam slope at 1, the first node
of the arch, node 1, or 2, the last node of the arch, node
NEL + 1

.

BM_ = 0: The node is free to rotate.

BM_ = 1: The node is not free to rotate.

LABEL A character string used to identify the output.

As outlined in Figure 5.1, the main program, ARCH_0PT.F0R

is divided into subroutines. In general, subroutine Geometry

is called in order to generate the x and y coordinates of the

global nodal points and determine the orientation of each

element. Following Geometry, subroutine Optimization_tool

establishes the DOT parameters prior to the first call of the

DOT program. The first call serves only to record the DOT

parameters selected in DOT's internal arrays. After DOT is

called, the Optimization_tool subroutine, calls Eval to

evaluate the objective function and constraint functions

originally outlined in the problem formulation of Chapter II.

As detailed in Chapter IV, the constraint functions are

made functions of the design variables through Finite Element
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data me

ARCH_Di

ARCH_0tJT

MAn ?mm

ABCH.OFTJOR

geometry

OPTOflZAlTOLTOOL

TK

I
ABCB_ OUTPUT

( END
j

0PT1MEA1XDI LOOP ECTBBWAL S07T1AJS

AKH.STKESS

FBI ANALYSIS

DOT

DLSABC

Figure 5 . 1 Arch Opt Program Structure
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Method analysis. Subroutines Form and Force_vector develop the

global stiffness matrix and force vector, which are modified

by subroutine Bndary for the appropriate boundary conditions.

The equation solver, L2ARG, from the IMSL library is called to

solve for the global displacements, which in turn are used to

calculate the nodal stresses. Once the constraints are

evaluated for the initial design, the problem is returned to

DOT where the move direction is computed and an updated design

point chosen. The objective and constraint functions are

reevaluated for the updated design point before returning to

DOT for further iteration.

Once termination criteria for optimization are reached,

the main program creates the output file, ARCH_OUT.DAT. This

file contains the problem parameters, optimized design

variables, and the resulting objective function value along

with a variety of additional information. Summarizing, for a

given geometry, loading, and set of end conditions, the

program is capable of finding the optimum cross section

dimensions of each nodal point along the length of the arch.

To validate the FEM analysis, several non-optimum straight

beam and arch problems with known analytical solutions were

solved. A straight cantilever structure, subject to a

concentrated lateral end load, axial load, and end moment; and

a quarter cantilever arch, subject to a lateral end load were

analyzed. These test problems established the program error

for stress and displacement calculations. Additionally, the
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quarter cantilever arch and a hinged-hinged semi-circular ar

structure, subject to a lateral load on the axis of symmetr

establish trends in a relationship between the number

elements used to approximate the arch and accuracy. T.

remainder of this chapter is a summary of the results and t'

conclusions drawn from each validation problem studied. 1

complete solution of each problem is contained in Appendix

A. VALIDATION I: CANTILEVER BEAM

A cantilever beam is subject to a concentrated end load

shown in Figure 5.2. [Ref. 8]

5

4

3

2

I

o.o

11.2*

22.S

3775

4S.
777rl7T

Figure 5.2 Validation Case #1

L = 45.00 inches

B = 1.50 inches

H- 3.00 inches

BH 2

I- = 3.375 inches*

P = l, 000.0 lbf

M-P- y

h
M.

<*3
=

I

ARCH_OPT.FOR was run for this beam structure using

angle of 45.0 X 10" 5 radians and a radius of 10 6 inches
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approximate a straight beam of 45 inches. The four element FEM

solution is compared to the analytical solution in Table 5.2.

TABLE 5.2

NODE THEORETICAL
STRESS

FEM ANALYTICAL
STRESS

% ERROR

1 20000.0 19999.7 0.0015

2 15000.0 14999.7 0.0020

3 10000.0 9999.8 0.0020

4 5000.0 4999.9 0.0020

5 0.0 0.0000

where the percent error is defined as:

% Error = ( Theory - FEM Analysis )/ Theory * 100

B. VALIDATION II: PRISMATIC BAR

Similarly, a prismatic bar is subject to an axial load as

shown in Figure 5.3. [Ref. 8]

5 «»

4 n

3 <>

2 o

i
Figure 5 . 3 Validation Case #2

L - 45 .00 inches

B * 1.50 inches

H- 3.00 inches

A-B' H-4.50 inches 2

P = l / 000.0 Ibf

G =_= 222.

T

n A
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Input values for angle and radius remained the same to

approximate the straight bar. The four element FEM solution is

compared in Table 5.3.

TABLE 5.3

NODE THEORETICAL
STRESS

FEM ANALYTICAL
STRESS

% ERROR

1 222.2 222.2 0.0000

2 222.2 222.2 0.0000

3 222.2 222.2 0.0000

4 222.2 222.2 0.0000

5 222.2 222.2 0.0000

C. VALIDATION III: CANTILEVER BEAM

The cantilever beam is subject to a concentrated moment at

the free end as shown in Figure 5.4. [Ref. 8]

5

4

3 <

2 n

t» tTWTT

45."

37.76'

? U.25"

J- 0.

Slopes' =_* EI

L = 45.00 inches

B = 1 .50 inches

H- 3. 00 inches

1 = ¥EL = 3.375 inches

£=30 xl0 6 psi

M=10,0002bf

/ _ Mx

Displacement S - Mx'

Figure 5.4 Validation Case #3
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The four element FEM solution for both slope and

displacement is compared in Table 5.4.

TABLE 5.4

NODE THEORETICAL
SLOPE

FEM ANALYTICAL
SLOPE

% ERROR

1 0.00000000 0.00000000 0.0000

2 0.00111111 0.00111109 0.0019

3 0.00222222 0.00222218 0.0019

4 0.00333333 0.00333328 0.0016

5 0.00444444 0.00444438 0.0014

NODE THEORETICAL
DISPLACEMENT

FEM ANALYTICAL
DISPLACEMENT

% ERROR

1 0.00000000 0.00000000 0.0000

2 0.00625000 0.00624985 0.0024

3 0.02500000 0.02499940 0.0024

4 0.05625000 0.05624880 0.0021

5 0.10000000 0.09999790 0.0021

D. DATION IV: CANTILEVER QUARTER ARCH

A cantilever quarter arch is subject to a lateral load as

shown in Figure 5.5. [Ref. 8]
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L = 45 . 00 inches

B = 1 . 50 inches

H- 3.00 inches

I = -£2£ = 3.375 inches*

£= 30 xlO 6 psi

P = 1, OOO.Olhf

Figure 5.5 Validation Case #4

ARCH_OPT.FOR was run for this structure using an angle of

90.0 degrees and a radius of 45 inches. To approximate the

arch a four, six, eight, ten and 12 element FEM solution is

solved and compared to the analytical solution presented in

Table 5.5.

TABLE 5.5

MODE THEORETICAL FEM ANALYTICAL
5X

% ERROR

4 0.450000 0.446951 0.677556

6 0.450000 0.448382 0.359556

8 0.450000 0.448854 0.254667

10 0.450000 0.448790 0.268889

12 0.450000 0.449100 0.200000
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E. VALIDATION V: HINGED-HINGED SEMI-CIRCULAR ARCH

A hinged-hinged semi-circular arch structure is subject to

a lateral load along the axis of symmetry as shown in Figure

5.6. [Ref. 8]

R = 32.0 inches

B = 1 .50 inches

H= 3.00 inches

P = 10, 000.0 lbf

M=I3. (1 -cos0) PR
IT

(8/n0)

Figure 5.6 Validation Case #5

Results are tabulated in Table 5.6 for comparison of the

four, six, eight, ten, 12, 14, and 16 element FEM solutions to

the analytical solution. It should be noted that by using

symmetry, the arch structure is approximated by twice the

number of elements shown in the calculations.

51



TABLE I>.6

NODE e THEORETICAL
STRESS

FEM ANALYTICAL
STRESS

% ERROR

4 0.0 0.000000

22.5 11911.4 12338 3.581870

45 11183.3 11971.7 7.049945

67.5 2073.4 1043.2 49.685474

90 25840.4 24725.3 4.315231

6 0.0 0.000000

15 9293.9 9411.2 1.262367

30 13108.3 13334.9 1.728775

45 11183.3 11503.9 2.866917

60 3650.1 4042.8 10.759982

75 8978.0 8539.9 4.879970

90 25840.4 25386.8 1.755283

8 0.0 0.000000

11.25 7465.5 7509.3 0.586658

22.5 11911.4 11997.3 0.721573

33.75 13166.7 13291.6 0.948666

45 11183.3 11342.3 1.421903

56.25 6037.3 6224.5 3.099877

67.5 2073.4 1865.4 10.029988

78.75 12837.1 12616.3 1.720372

90 25840.4 25615.1 0.87178

10 0.0 0.000000

9 6206.4 6225.1 0.301171

18 10509.0 10546.3 0.352057

27 12801.8 12856.2 0.424639

36 13028.5 13098.8 0.539901

45 11183.3 11268.0 0.757518

54 7311.7 7408.7 1.325965

63 1509.2 1616.0 7.077882

72 6081.5 5967.4 1.876789

81 15273.5 15155.0 0.775860

90 25840.4 25720.4 0.464280
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NODE e THEORETICAL
STRESS

FEM ANALYTICAL
STRESS

% ERROR

12 .0 0.000000

15 9293.9 9309.8 0.171326

30 13108.3 13139.3 0.236589

45 11183.3 11227.5 0.395371

60 3650.1 3704.7 1.497107

75 8978.0 8917.1 0.678600

90 25840.4 25777.3 0.244082

14 0.0 0.000000

6.428571 4621.6 4624.5 0.063120

12.85714 8290.8 8296.5 0.068954

19.28571 10961.5 10970.1 0.078835

25.71429 12600.0 12611.5 0.091081

32.14286 13185.9 13200.1 0.107896

38.557143 12711.6 12728.6 0.133432

45 11183.3 11202.7 0.173611

51.42857 8620.0 8641.9 0.253703

57.85714 5054.1 5078.2 0.476611

64.28571 530.4 556.4 4.907803

70.71429 4894.3 4866.7 0.563998

77.14286 11151.7 111123.1 0.256399

83.57143 18163.1 18133.9 0.160800

90 25840.4 25810.9 0.114053

16 0.0 0.000000

11.25 7465.5 7465 0.006738

22.5 11911.4 11911.1 0.002106

33.75 13166.7 13167.7 0.007655

45 11183.3 11186 0.024281

56.25 6037.3 6042.2 0.080341

67.5 2073.4 2066.5 0.330744

78.78 12837.1 12828.8 0.065020

90 25840.4 25831.4 0.034720
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F. CONCLUSIONS

The four element approximation for a straight cantilever

structure produced an error no greater than 0.016%. The

cantilever quarter arch produced an error less than 0.70% for

the four element model which reduced to less than 0.20% with

12 elements. The results of the hinged-hinged arch indicate,

as expected, that the more elements used the better the

solution. Considering only meaningful stresses, stresses in

excess of 10,000 psi, the error is less than 2% for eight

elements and less than 0.8% for 12 elements.

In general, the percent error recorded for the first three

validation cases seemed insignificant. Four element

approximations sufficed to solve the stresses, slopes, and

displacements for straight structures. Therefore, it was

concluded that the program was producing accurate results for

analysis of straight beams.

Unfortunately, for the arch structures, the error of the

four element model was significant (greater than 45%) .

However, the error reduced significantly when more elements

were used to approximate the structure. Grid independence, (2%

error) , was not achieved for the hinged-hinged arch until at

least eight elements are used to approximate the structure.

This indicates that an element cannot be used to span more

than 11.25 degrees of arch. The resulting trend, as expected,

confirms that the more elements used, the better the model.

However, computer time and computer error increase with
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increase in the number of elements and models of more than

eight elements were not used.
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VI. CASE STUDIES

Results are presented for a number of cases with regard to

optimization scheme and stress analysis. The case studies

range from the simple cantilever beam to complex arch struc-

tures. In addition, for many cases one parameter of the same

structure was modified and the problem was reoptimized to

establish a comparison. The straight beam is examined first,

followed by five cases studying the quarter cantilever arch

with varied loadings. Cases #7 and #8 are symmetric

semicircular arches comparing simply supported arch structures

with fixed-end arch structures. The remaining cases are

asymmetric semicircular arch structures. Cases #9 through #11

investigate various end conditions and Cases #12 through #14

various combined loadings. The cases conclude with Case #15

which combines a concentrated lateral load, applied moment,

and distributed load across the arch structure.

For each case, interpretations of the results are

accompanied by a schematic drawing of the structure modeled,

a plot of the cross section dimensions and area as functions

of nodal points, and a plot of the axial and bending stresses
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as functions of nodal points. Eight elements were selected to

model the arch structures and the material properties were

selected such that the yield strength was imputed as 52,000

psi and Young's Modulus as 30,000,000 psi. For reference, the

Modified Method of Feasible Directions will be referred to as

Method 1 and the Sequential Linear Programming Method will be

referred to as Method 2. Additionally, each endpoint, unless

geometrically restricted by imposed boundary conditions, can

have three 'means of displacement,' MOD. An endpoint can

rotate about the z-axis, displace in the x direction, and

displace in the y direction. For reference, an endpoint will

be described by a number from zero to three reflecting the

means of diplacement. As an example, a fixed end is considered

to have zero means of displacement because it cannot rotate or

displace in either the x or y direction. A free end which can

rotate and displace in both the x and y direction is

considered to have three means of displacement. A hinge which

can only rotate has one MOD. The complete computer data

printout is presented in Appendix D.
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A. CASE #1: CANTILEVER BEAM WITH LATERAL LOADING

The cantilever beam was optimized first in order to

provide guidance for adjusting the various parameters

discussed in Chapter III. Satisfactory results were produced

by turning the auto scaling function off, reducing CT and

CTMIN, and establishing the termination criteria. Using the

Modified Method of Feasible Directions, henceforth referred to

as Method 1, the cross section dimensions and stresses were

plotted. As expected, the dimensions form a parabolic function

over the length of the beam. Furthermore, the beam exhibits

only stress due to bending moments. The normal stresses are

virtually nonexistent which likewise is as expected.

Loads

zooo*

32

>x

Lateral 2, 0C0 lbs
Axial C lbs
Moment c

End conditions

in-lbs

Node 1 MOD
Node 9 3 MOD

Dimensions

Radius not applicable
Theta no

Total volume

t applicable

Volume 33 .13 in 3

TTTTfrT •*•
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Case #1

Base Height Area (in " 2)

CO
o
CO

O
O

100000

10000=

s
8 1000

55

100

Axial Bending
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B. CASE #1A: CANTILEVER BEAM WITH LATERAL LOADING

For comparison with Case #1, the same cantilever beam was

optimized using the Sequential Linear Programming Method,

henceforth referred to as Method 2. The results are quite

similar. In total structure volume, the difference is less

than 0.07%. The only significant difference appears at nodal

point 9, the free end. In theory, the free end of a beam can

support no bending stresses. For this case, nodal point 9 has

no stresses unlike the previous case which had relatively

small bending stresses at nodal point 9. However, from this

result alone it is not conclusive that Method 2 is superior to

Method 1.

Loads

1000'

rt

T

32
H

Lateral 2,000 lbs
Axial lbs
Moment in-lbs

End conditions

Node 1 MOD
Node 9 3 MOD

Dimensions

Radius = not applicable
Theta not applicable

Total volume

Volume 33.15 in 3

iifjn *

60



Case #1a

Base Height -*— Area (in ~ 2)

100000:

4 4 +-

to
O
CO

O
o

J

J

10000=

I
% 1000=

2 5

CO

-+ 4 -*-

i

100- J—

i

23456789
Node

Axial + Bending
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C. CASE #2: CANTILEVER ARCH WITH LATERAL LOADING

Since Case #1 did not strongly suggest a preferential

method, the cantilever arch was optimized with Method 1. At

most nodal points, the total stresses were well below the

yield stress which indicates that this design is far from an

optimum structure. Additionally, the height and base

dimensions hovered around the initial starting point of 2

inches by 2 inches and produced a structure only 7.42% less in

volume than that of the initial structure. It appears that the

optimizer failed to achieve an optimum solution using this

Method.

Loads

LOOO

Lateral 2, 000 lbs
Axial lbs
Moment.

End conditions

in-lbs

Node 1 C MOD
Node 9 1 MOD

Dimensions

Radius 32 in
Theta 9C

Total volume

degrees

Volume 18 6.15 in 3
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3.5-

c
I

1 I

C
|

ffi,

1 25 '

o !

Case #2

1.5-

5

Node

Base Height Area (in ~ 2)

(D
o
CO

O
O

CO

100000

10000

1000

100

Axial Bending
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D. CASE #2A: CANTILEVER ARCH WITH LATERAL LOADING

For comparison, the same arch structure was reoptimized

with Method 2. Each element of the structure now supports

stresses equal to the yield stress producing an efficient

structure. The total volume was reduced from the initial

starting point by 61.32%. For this structure, Method 2 also

produced results with fewer iterations than Method 1. With

these observations in mind, Method 2 was selected as the

preferred method for quarter arches. Additionally, it is

interesting to note that the axial stresses only remotely

effect the stress total for the first 5 nodal points, hence

the first 45 degrees of arch. After node 5, the height reduces

significantly, however the area remains roughly the same.

Loads

2.000

Lateral 2, 000 lbs
Axial lbs
Moment

End conditions

in-lbs

Node 1 MOD
Node 9 3 MOD

Dimensions

Radius 32 in
Theta 90

Total volume

degrees

Volume 77 .78 in 3
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Case #2a

7 8 9

Base Height -*— Area (in ~ 2)

lOOOOCb

« 1000*
© 2

100
t

1 2 3 4 5 6 7

Node
8

— Axial —4— Bending
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E. CASE #3: CANTILEVER ARCH WITH AXIAL LOADING

This case presents a quarter arch structure subject to an

axial load vice the lateral load of Case #2. Unlike Case #2

the axial stresses increase significantly along the length of

the arch and the bending stresses decrease. The net result is

an arch structure of 27.15% less material. This seems to

indicate a dominant relationship between area and bending

stress. Additionally, this case exemplifies the difficulty

experienced by approximating an arch of 90 degrees with eight

straight segments. The plots appear very disjointed, hence the

data points seem circumspect. However, the effect can be

minimized as presented in Case #3a.

Loads

2000

Lateral lbs
Axial 2, 000 lbs
Moment

End conditions

in-lbs

Node 1 MOD
Node 9 3 MOD

Dimensions

Radius 32 in
Theta 90

Total volume

degrees

Volume 56 .66 in 3
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Case #3

Base Height -**- Area (in ~ 2)

100000

(0
u
CO

O
O

&
« 1000
ow
CO

Axial Bending
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F. CASE #3A: CANTILEVER ARCH WITH LATERAL LOADING

Thus far, each case has started with an initial design of

2 inches by 2 inches. For comparison, the arch structure of

Case #3 was optimized a second timeusing the results of Case

#3 as the initial design. Reoptimizing had the desired effect

of smoothing the results and in graphical form, both the area

and stress curves take on a fairer shape. In terms of total

structure volume, the reoptimized arch was 27.03% smaller than

that of Case #3. In all subsequent cases this strategy of

reoptimization will be referred to as a two-stage optimization

strategy.

Loads

2000*

Lateral lbs
Axial 2, 000 lbs
Moment

End conditions

in-lbs

Node 1 MOD
Node 9 3 MOD

Dimensions

Radius 32 in
Theta 90

Total volume

degrees

Volume 41 .34 in 3
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Case #3a

)

1 2 3 4 5

Node
6 7 8 9

j

-»- Base —•— Height —ste—- Area (in * 2)
i

100000= —

u
CO

CD
O

10000

£ 1000

CO

Axial H— Bending
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G. CASE #4: CANTILEVER ARCH WITH LATERAL LOADING AND MOMENT

For this case, a lateral load and concentrated moment were

applied at nodal point 9. The shape of the dimension plot

curves are very similar to those of the cantilever beam,

parabolic in form. In comparison with the same structure

subject only to the lateral load, Case #2, the total structure

volume is reduced by 18.67%. The concentrated end moment

negates the effect of lateral load on the extreme fibers by

producing compressive stresses on the outer fibers and tensile

stresses on the inner fibers of the arch. Thus, the cross

sectional dimensions necessary to withstand the total normal

stress is reduced thereby reducing the total structure volume.

Loads

,
1000

#*

Lateral 2, COO lbs
Axial lbs
Moment 1,

End conditions

COO in-lbs

Node 1 MOD
Noae 9 3 MOD

Dimensions

Radius 32 in
Theta 90

Total volume

degrees

Volume 63 .25 in 3
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Case #4

Base Height Area (in ~ 2)

100000:

®
(0
o

g 10000

o

j_ + * 1 1 i— j j

&
£ 1000!

s

100123456789
Node

Axial BendingD
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H. CASE #4A: CANTILEVER ARCH WITH LATERAL LOADING AND MOMENT

To further emphasize the effect of the concentrated end

moment, the structure of Case #4 was subject to the same

lateral load while the moment at the end point was increased

by a factor of 10. By increasing the applied moment, the

effect of the lateral load on the extreme fibers is negated

further which reduces the cross sectional area necessary to

withstand the total stresses. Expectedly, the volume reduced

from Case #4 by 15.88% for a total reduction from Case #2 of

31.60%. It is interesting to note that the shape of the

dimension curves still remain parabolic in form.

Loads

1,000
««

Lateral 2, 000 lbs
Axial lbs
Moment 10

End conditions

, 000 in-lbs

Node 1 MOD
Node 9 3 MOD

Dimensions

Radius 32 in
Theta 90

Total volume

degrees

Volume 53 .21 in 3
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Case #4a

7 8 9

Base Height -*- Area (in ~ 2)

100000:

(0
o

o
O

8.

10000=

9 1000:
©
CO

100-

\ I

I123456789
Node

Axial Bending
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I. CASE #5: CANTILEVER ARCH WITH DISTRIBUTED LOADING

This case is presented to display some of the versatility

of the program. A load acting radially inward is distributed

along the length of the arch. The cross section dimensions and

area curves appear to be almost linear and the bending

stresses dominate the total stresses. Since the bending stress

is a function of height squared, the optimizer tried to

maximize the height dimension until the geometric constraint

was violated. At each nodal point, the height is 10 times the

size of the base except at the end point for which both

dimensions reach the minimum side constraint. Had the arch

structure not been optimized, the volume necessary to support

the distributed load would increase by 225%.

Loads

lOOLftS/iN,

Lateral lbs
Axial lbs
Moment ir.-lbs
Distrib. 1,

End conditions

OCC lbs/in

Node 1 MOD
Node 9 3 MOD

Dimensions

Radius 32 in
Theta 90

Total volume

degrees

Volume 55 .70 in 3
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Case #5

Base Height Area (in * 2)

Axial +— Bending
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J. CASE #6: CANTILEVER ARCH WITH LATERAL AND
DISTRIBUTED LOADING

To build on Case #5, a lateral load was applied at the end

point in addition to the distributed load. In comparison, the

volume required to withstand the lateral load only is 77.78

in 3 (Case #2) . The volume required to withstand the

distributed load only is 55.70 in 3
. Yet the volume to

withstand both the lateral load and the distributed load

presented in this case is 97.47 in 3
. By combining loads which

produce opposing bending moments, the volume of the resultant

optimized arch is not equal to the sum of the volume of arches

optimized subject to the individual loads. Therefore, it is

possible to achieve a more efficient structure through

resourceful combination loadings.

Loads

Lateral 2, 000 lbs
Axial lbs
Moment in-lbs
Distrib. 100 lbs/in

End conditions

Node 1 MOD
Node 9 3 MOD

Dimensions

Radius 32 in
Theta 90

Total volume

degrees

Volume 97 .47 in 3

76



Case #6

Base Height -*— Area (in " 2)

100000:

t
-t 1——i 1

Axial Bending
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K. CASE #6A: CANTILEVER ARCH WITH LATERAL AND
DISTRIBUTED LOADING

For comparison, the same structure (Case #6) was optimized

with the DOT auto scaling function switched on. Changing this

parameter seemed to have little effect on the overall volume

indicated by an increase by only 4.40%. However, the

computation effort judged by total computer time nearly

doubled and both the dimension and stress curves have

unexpected behavior near the endpoint. This comparison

confirmed that better results were achieved by switching the

auto scaling function off for these structures.

Loads

Lateral 2,000 lbs
Axial lbs
Moment C in-lbs
Distrib. 100 lbs/in

End conditions

Node 1 MOD
Node 9 3 MOD

Dimensions

Radius 32 in
Theta 90 degrees

Total volume

Volume 101.76 in'
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Case #6 a

Base Height Area (in * 2)

100000:

o
(fi

O
O

&
8 1000
0)

100-
3 4 5 6

Node

Axial Bending
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L. CASE #7: HINGED-HINGED ARCH WITH LATERAL LOADING

For the remaining cases, it was observed that the only

reliable and consistent results were obtained by using Method

1 for optimization. It is theorized that restricting

displacements at both endpoints may have caused Method 2 to

become mathematically unstable and therefore unsuitable to

solve such problem. For this particular case, it is

interesting to note that at the base, node 1, and 56.25

degrees from the base, node 6, the axial stress completely

dominates the total stresses because there is virtually no

binding force. At these points, the dimensions of the cross

section, dictated strictly by the axial stress, form a square

to produce the minimum area.

Loads

16,000

Lateral 16,000 lbs
Axial lbs
Moment in-lbs

End conditions

Node 1 1 MOD
Node 9 1 MOD

Dimensions

Radius 32 in
Theta 180 degrees

Total volume

Volume 129.12 in J
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4.5

4

Case #7

Base Height Area (in ~ 2)

100000^

a
(D -i

o
CO

O 10000 E

O J—

i

-i
1

-i

V) J
a

i

(0 1000=

CO

Axial Bending
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M CASE #7A: HINGE-HINGED ARCH WITH LATERAL LOADING

Similar to Case #3a, the arch structure of Case #7 was

reoptimized using the results achieved as the initial design

in order to apply the two-stage optimization strategy. Again,

reoptimizing had the desired effect of smoothing the results,

however, this effect was not as dramatic for Method 1 as for

Method 2. The two-stage optimization strategy only reduced the

volume by 4.47% using Method 1 as opposed to the 27.03%

reduction using Method 2. Additionally, at node 6, the total

stresses exceeded the yield stress by 2.38%. Fortunately, this

occurrence did not repeat in any other cases due to

reoptimization . Therefore, the two-stage optimization strategy

was applied for the remaining cases.

Loads

16,000

Lateral 16,000 lbs
Axial lbs
Moment in-lbs

End conditions

Node 1 1 MOD
Node 9 1 MOD

Dimensions

Radius 32 in
Theta 180 degrees

Total volume

Volume 123.35 in 3
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Case #7a

Base Height -*- Area (in ~ 2)

100000

Axial Bending
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N. CASE #8: FIXED-FIXED ARCH WITH LATERAL LOADING

For this case, the same loading of Case #7 was applied to

a semicircular arch with fixed end points. This produces a

statically indeterminate structure with zero means of

displacement at both the boundaries. As a result, the peaks of

the axial stress curve are dampened and shifted towards the

center by approximately 15 degrees. A larger bending moment is

produced at the base since it is no longer free to rotate.

However, the net results is that the total structure volume of

Case #7 is reduced by 14.08% by changing the end conditions

from simply-supported to fixed. From this, as expected, a

structure more statically indeterminate results in a more

efficient structure.

Loads

43

x 16,000

Lateral 16,000 lbs
Axial lbs
Moment in-lbs

End conditions

Node 1 MCD
Node 9 MOD

Dimensions

Radius 32 in
Theta 180 degrees

Total volume

Volume 105.98 in J
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O. CASE #8A: FIXED-FIXED ARCH WITH LATERAL LOADING

In Chapter I, thesis research performed by Scott McDavid

was mentioned as the predecessor for this investigation. His

results optimized a fixed-fixed arch subject to the same

lateral load with respect to the base dimension only. By

holding the height dimension constant, the structure must have

twice the volume in order to withstand the loading. For most

arch structures, the bending stress is usually the more

dominate stress. Therefore, the height dimension has more

effect on the total volume than the base dimension because the

bending stress is a function of base times height squared.

When the bending stress dominates, the optimizer will seek to

maximize the height.

Loads

Lateral 16,000 lbs
Axial lbs
Moment ir.-lbs

End conditions

Node 1 MOD
Node 9 MOD

Dimensions

Radius 32 in
Theta 180 degrees

Total volume

Volume 215.77 in'
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Case #8a
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P. CASE #9: FIXED-HINGED ROLLER ARCH WITH AXIAL LOADING

Unable to invoke symmetry on the remaining cases, the

elements used to model an asymmetric semicircular arch must

span the full 180 degrees. The largest number of elements used

to model the structure and produce consistent results remained

only eight. It is again suggested that restricting

displacements at both endpoints cause the problem to become

mathematically unstable. For this particular case, the arch

has zero means of displacement at node 1 and two means of

displacement at node 9. As expected, the arch is quite large

at node 1 to support the resultant moment. At node 3, 45

degrees up from node 1, the axial stress dominates the total

stress and the size decreases. For reference, this arch is

more than twice the volume of the arches in Case #7 and #8.

Loads

43

16,000

Lateral lbs
Axial 16,000 lbs
Moment in-lbs

End conditions

Node 1 MOD
Node 9 2 MOD

Dimensions

Radius 32 in
Theta = 180 degrees

Total volume

Volume 287.15 in 5
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Q. CASE #9A: HINGED-HINGED ROLLER ARCH WITH AXIAL LOADING

To emphasis the conclusion drawn from case #9 about the

endpoints, the arch structure and loading studied for Case #9

was modified by adding an additional means of displacement at

node 1. Allowing nodal point 1 to rotate freely, the dimension

and stress curves alter drastically. The total structure

volume increased by 19.92%, yet the structure cannot withstand

the stresses. The total stresses exceed the yield stresses by

54.81% resulting in an infeasible design. It appears that the

optimizer failed to achieve an optimal solution for this arch

structure due to the additional means of displacement.

Loads

*3

16,000

Lateral 2,000 lbs
Axial 16,000 lbs
Moment C in-lbs

End conditions

Node 1 1 MOD
Node 9 2 MOD

Dimensions

Radius 32 in
Theta 180 degrees

Total volume

Volume 344.34 in 3
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R. CASE #10: FIXED-FIXED ROLLER ARCH WITH AXIAL LOADING

For this case, the same arch structure and loading studied

in Case #9 was modified by reducing one means of displacement

at node point 9. This produces a more redundant structure with

a resultant decrease in total volume of 10.64%. In comparison,

Case #8 with one less degree of freedom than Case #7 at both

node 1 and node 9, had a reduction in total volume of 14.08%.

Again, it is suggested that a structure more statically

indeterminate results in a more efficient structure.

Additionally, it is noted that when the axial stress dominates

the total stresses, the area is reduced significantly and the

cross section dimensions reduce to form a square.

Loads

ftf

>x
Uooo*

Lateral lbs
Axial 16,000 lbs
Moment in-lbs

End conditions

Node 1 MOD
Node 9 1 MOD

Dimensions

Radius 32 in
Theta = 180 degrees

Total volume

Volume 256.61 in 3
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S. CASE #11: HINGED-FIXED ARCH WITH LATERAL LOADING
AND MOMENT

To investigate the possibility that dominant axial

stresses result in volume reduction, a semicircular arch with

one degree of freedom at node 1 and zero degrees of freedom at

node 9 was subjected to a lateral load and applied bending

moment. From this, it appears that the cross sectional area is

inversely proportional to the axial stresses. Additionally, it

appears that the dimension and stress curves of the left half

of the structure behaves exactly as those of Case #7 which has

the identical end conditions. Similarly, the curves of the

right half of the arch behaves exactly as those of Case #8.

This suggests that the boundary conditions do not effect the

structure past the midpoint.

Loads

12000

Lateral 12,000 lbs
Axial C lbs
Moment 1,000 in-lbs

End conditions

Node 1 1 MOD
Node 9 MOD

Dimensions

Radius 32 in
Theta = 180 degrees

Total volume

Volume 153.08 in 3
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T. CASE #11A: HINGED-FIXED ARCH WITH LATERAL LOADING
AND MOMENT

In order to test the possibility that dominant axial

stresses might reduce the cross section area and hence reduce

the total structure volume, the structure of Case #11 was

subject to the same bending moment while the lateral load was

increased by a factor of 2. As a result, the axial stresses

increased overall. Again, it appears that the cross sectional

area is inversely proportional to the axial stresses. The

dimension and stress curves displayed the same shape as noted

before but the total volume increased by 57.95%. Therefore, it

was concluded that increasing axial stresses may reduce the

cross sectional area at specific nodes but the overall

structure volume is not reduced.

Loads

AS

X 24 000 *

Lateral 24,000 lbs
Axial lbs
Moment 1,000 in-lbs

End conditions

Node 1 1 MOD
Node 9 MOD

Dimensions

Radius 32 in
Theta 180 degrees

Total volume

Volume 241.78 in 3
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U. CASE #12: FIXED-FIXED ARCH WITH MULTIPLE LOADING

To demonstrate further versatility of this program, a

fixed-fixed arch was subjected to a combination load applied

at an angle 45 degrees up from node 9. The load consisted of

a concentrated lateral and axial load and an applied bending

moment. As anticipated, there is a jump in the dimension

curves at node 7 were the load was applied. Interestingly,

22.5 degrees from each endpoint, the axial stress dominates

and accordingly, the cross sectional area reduces

significantly. Additionally, at node 5, the midpoint of the

arch structure, the cross sectional area is significantly

smaller as a result of an increase in the axial stress.

Loads

Lateral 17,000 lbs
Axial 9,00C lbs
Moment 1,000 in-lbs

End conditions

Node 1 MOD
Node 9 MOD

Dimensions

Radius 32 in
Theta 180 degrees

Total volume

Volume 156.55 in 3
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V. CASE #13: FIXED-FIXED ROLLER ARCH WITH AXIAL LOADING
AND MOMENT

For this case, the same structure of Case #10 is subjected

to an equivalent axial load with an additional bending moment

applied at nodal point 6, 67.5 degrees up from node 9.

Shifting the load by 22.5 degrees and adding the applied

bending moment appeared to have little effect on the overall

design. In fact, the volume is increased from Case #10 by only

3.65% and the dimension curves exhibit very similar

characteristics. However, the dip observed previously in the

axial stress curve at node 6 of Case #10 is not present in the

axial stress curve of this case.

Loads

Lateral lbs
Axial 16,000 lbs
Moment 1,000 in-lbs

End conditions

Node 1 MOD
Node 9 1 MOD

Dimensions

Radius 32 in
Theta 180 degrees

Total volume

Volume 265.96 in 3
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W. CASE #13A: FIXED-FIXED ROLLER ARCH WITH AXIAL LOADING
AND MOMENT

For comparison, the same structure and loading were

reoptimized starting from a different initial design point.

Previously, each optimization began from an initial design of

2 inches by 2 inches at each node. For this case, the base

dimension at each nodal point was 0.5 inches, and the height

dimension at each nodal point was 3.5 inches. Incredibly, the

volume of the resultant structure is 33.96% less than the

volume of the structure optimized in Case #13. Obviously,

optimization can be a function of the starting point.

Fortunately in the previous cases, various initial design

points were tested and this occurence did not repeat itself.

Loads

Lateral lbs
Axial 16,000 lbs
Moment 1,000 in-lbs

End conditions

Node 1 MOD
Node 9 1 MOD

Dimensions

Radius 32 in
Theta 180 degrees

Total volume

Volume 175.65 in'
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Case # 13a
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X. CASE #14: FIXED-HINGED ARCH WITH MULTIPLE LOADING

In contrast to Case #13, this asymmetric arch was loaded

at an angle on the side of the arch with zero means of

displacement at the endpoint. The behavior exhibited by the

dimension and stress curves was similar to that of Case #12

which had zero means of displacement at both endpoints.

Allowing for the difference in the magnitude and direction of

the load, the only significant difference between Case #12 and

this case appears at node 8 and 9. It is presumed that the

added means of displacement at node 9 caused such a

difference. To ensure that a true optimum had been reached,

attempts were made to optimize this structure for several

different initial starting points. Consistent results were not

obtained.

Loads

Lateral 5,000 lbs
Axial 9,000 lbs
Moment 1,000

End conditions

in-lbs

Node 1 MOD
Node 9 1 MOD

Dimensions

Radius 32 in
Theta = 180 degrees

Total volume

Volume 121.28 in 5
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Y. CASE #15: FIXED-HINGED ROLLER ARCH WITH MULTIPLE LOADING

For the last case studied, a concentrated lateral load and

bending moment are applied at the midpoint in combination with

a load acting radially outward distributed along the length of

the arch. The cross sectional area behaved as anticipated from

Case #11, inversely proportional to the axial stress. Again,

to ensure that a true optimum had been reached, attempts were

made to optimize this structure for several different initial

starting points. Consistent results were not obtained.

Loads

Lateral 16,000 lbs
Axial lbs
Moment 1,000 in-lbs
Distrib. 100 lbs/in.

End conditions

Node 1 MOD
Node 9 2MOD

Dimensions

Radius 32 in
Theta = 180 degrees

Total volume

Volume 285.75 in 3
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Z. CASE #15A: FIXED-HINGED ROLLER ARCH WITH MULTIPLE LOADING

For comparison, the structure of Case #15 was subject to

the same bending moment and distributed load while the lateral

load was doubled in value. As demonstrated by Case #lla, an

overall increase in the axial stresses results does not effect

the shape of the dimension and stress curves. However, the

volume from Case #15 is increased by 79.65%. In comparison,

doubling the lateral load for Case #11 resulted in an increase

in volume of 57.95%. Of interest, it appears that the majority

of the volume increase is centered around the midpoint were

the increased load was applied.

Loads

Lateral 32,000 lbs
Axial lbs
Moment 1,000 in-lbs
Distrib. 100 lbs/in

End conditions

Node 1 MOD
Node 9 2 MOD

Dimensions

Radius 32 in
Theta 180 degrees

Total volume

Volume 516.58 in 3
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VII. CONCLUSIONS

The conclusions of this study are as follows

• The bar-beam model for stress analysis yielded results
which deviated from known analytical solutions with an
error of less than 2%. Therefore, the technique of
modeling arch structures with bar-beam elements is deemed
a viable approximation. (Chapter V)

• From the specific cases studied, the Sequential Linear
Programming method, (Method 2), best performed the
optimization for cantilever arch structures. The Modified
Method of Feasible Directions (Method 1) best performed
the optimization for arch structures with restrictive
boundary conditions at both endpoints. (Case #2, 2a, 7)

• Reoptimization of an optimal solution has the effect of
smoothing the results and reducing the volume of the
structure. The effect of this two-stage optimization
strategy was more significant for Method 2 than Method 1.

(Case #3a, 7a)

• The DOT auto scaling function inhibited the optimizer
performance. (Case #6a)

• Applying moments that produce stresses that oppose the
stresses produced by a concentrated load reduce the total
structure volume required to withstand the combined load.
Through prestressing one-way loaded structures, more
efficient structures can be achieved. (Case #4, 4a, 6)

• The cross sectional shape is dependant on the type of
stress experienced. When bending stresses dominate, the
optimal cross section forms a tall rectangle limited only
by the geometric constraint. When axial stresses dominate,
the optimal cross section dimensions form a square. (Case
#5, 7, 10)

• Structures which are more statically indeterminate are
more efficient under identical loading than less redundant
structures. (Case #8, 10)

• Asymmetric structures are more likely to produce erroneous
results due to the limit of the number of elements used to
obtain results. (Case #9)
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• The boundary conditions act as an excitation which follow
the St. Venant principle. The information from the
boundary condition diminishes such that for a semicircular
arch, the boundary conditions do not effect the cross
sectional shape past the arch midpoint. (Case #11, 14)

• Optimization is a function of the initial design starting
point. (Case #13a)

From this investigation, the following is suggested as a

possibility for future research in the realm of weight optimum

arch structures:

• Continue to record results for a comprehensive study of
all combinations of parameters, loadings, and end condi-
tions

• Optimize the arch structure using varied cross sections
such as a C, L, or I beam, a box beam, or a circular beam.

• Remove the assumption that the arch maintains a constant
radius of curvature and optimize the arch shape.

• Apply additional constraints such as global buckling in
order to present a more accurate model.
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APPENDIX A
DOT PROGRAM PARAMETERS

The information in the following tables is taken from

[Ref. 7]

SCALAR PARAMETERS STORED IN RPRM

LOCATION NAME DEFAULT VALUE

RPRM(l) CT -0.05

RPRM (2) CTMIN 0.003

RPRM (3) DABOB

J

MAX[0.001*ABS (F0), 0.0001]

RPRM (4) DELOBJ 0.001

RPRM (5) DOBJ1 0.1

RPRM (6) DOBBJ2 0.2*ABS (F0)

RPRM (7) DX1 0.01

RPRM (8) DX2 0.2*,AX[X(1)

]

RPRM (9) FDCH 0.001

RPRM (10) FDCHM 0.0001

RPRM (11) RMVLMZ 0.4

RPRM (12) DABSTR MAX[0.001*ABS (FO) , 0.00001]

RPRM (13) DELSTR 0.001

RPRM (14) -RPRM (2 0) RESERVED FOR INTERNAL USE

NOTE: FO = The value of the objective function at the start of
optimization (for the initial values of X)

.
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DEFINITIONS OF PARAMETERS CONTAINED
IN THE RPRM ARRAY

LOC. PARAM DEFINITION

1 CT A constraint is active if its numerical value is
more positive than CT . CT is a small negative number

2 CTMIN A constraint is violated if its numerical value is
more positive than CTMIN

3 DABOBJ Maximum absolute change in the objective between
ITRMOP consecutive iterations to indicate
convergence in optimization

4 DELOBJ Maximum relative change in the objective between
ITRMOP consecutive iterations to indicate
convergence in optimization

5 DOBJ1 Relative change in the objective function attempted
on the first optimization iteration. Used to
estimate initial move in the one-dimensional search.
Updated as the optimization progresses.

6 DOBJ2 Absolute change in the objective function attempted
on the first optimization iteration

7 DX1 Maximum relative change in a design variable
attempted on the first optimization iteration. Used
to estimate the initial move in the one-dimensional
search. Updated as the optimization progresses

8 DX2 Maximum absolute change in a design variable
attempted on the first optimization iteration. Used
to estimate the initial move inthe one-dimensional
search. Updated as the optimization progresses.

9 FDCH Relative finite difference step when calculating
gradients

10 FDCHM Minimum absolute value of the finite difference step
when calculating gradients. This prevents too small
a step when X(l) is near zero

11 RMVLMZ Maximum relative change in design variable during
the first approximate subproblem in the Sequential
Linear Programming Method. This is, each design
variable is initially allowed to change by ±40%.
This move limit is reduced as the optimization
progresses

.

12 DABSTR Maximum absolute change in the objective between
itrmst consecutive iterations of the Sequential
Linear Programming method to indicate convergence to
the optimum

13 DELSTR Maximum relative change in the objective between
ITRMST consecutive iterations of the Sequental
Linear Programming method to indicate convergence to
the optimum
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PARAMETERS IN THE IPRM ARRAY

LOCATION NAME DEFAULT VALUE

IPRM(l) IGRAD

IPRM(2) ISCAL NDV

IPRM (3) ITMAX 40

IPRM (4) ITRMOP 2

IPRM(5) IWRITE 6

IPRM(6) NCOLA NCON+NDV, but at least 2*NDV and
not more than 10*NDV

IPRM(7) IGMAX

IPRM (8) JTMAX 20

IPRM (9) ITRMST 2

IPRM(IO) JPRINT

IPRM(ll) IPRNT1

IPRM (12) IPRNT2

IPRM (13 JWRITE

IPRM (14) -IPRM (18) RESERVED FOR FUTURE USE

IPRM (19) NEWITR INTERNALLY DEFINED

IPRM(20) NGT INTERNALLY DEFINED
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DEFINITIONS OF PARAMETERS CONTAINED IN THE IPRM ARRAY

T rsr- PARAM. DEFINITION

1 IGRAD Specifies whether the gradients are calculated by DOT
(IGRAD=0) or by the user (IGRAD=1)

2 ISCAL Design variables are rescaied every ISCAL iterations. Set
ISCAL=-1 to turn off scaling

3 : TKAX Maximum number of iterations allowed at the optimize level

4 ITRMOP The number of consecutive iterations for which the absolute
or relative convergence criteria must be met to indicate
convergence at the optimizer level

5 'WRITE File number for printed output

6 NCOLA Number of columns in constraint gradient matrix A

7 IGMAX If IGMAX=C, only gradients of active and violated
constraints are calucated. If IGMAX>0, up to NCOLA
gradients are calculated, including active, violated, and
near active constraints

8 JTMAX Maximum number of iterations allowed for the Sequential
Linear Programming method. This is the number of linearized
subproblems solved.

9 ITRMST The number of consecutive iterations for which the absolute
or relative convergence criteria must be met to indicate
convergence in the Sequential Linear Programming method

10 JPRINT Sequential Linear Programming subproblem print. If
JPRINT>C, IPRINT is turned on during approximate linear
subproblem. This is for debugging only

\ j. IPRNTI If IPRNT1=1, print scaling factors for the X vector

12 IPRNT2 If IPRNT2=1, print miscellaneous search information. If
I?RNT2=2, turn on print during one-dimensional search
process. This is for debugging only

13 JWRITE File numoer to write iteration history information to. This
is useful for using postprocessing program to plot the

19 NEWITR Normally =-1. Set =n at the start of a new iteration, where
n is the number of the iteration just completed. If
METKOD=0,1, this is after each one-dimensional seaarch. If
METH0D=2, this is after each approximate optimization If
JWRITE>0, the optimization information will have just been
written to that file. If you with to stop after each
iternation (or after a particular iteration) and then re-
start later, NEWITR is a flag to do this. NEWITR is defined
internally by DOT

20 NGT The number of constraint gradients needed. If the user
supplies gradients to DOT, this will be needed. The
constraint numbers for which gradients are needed are
contained in positiooon 1-NGT of the IWK array. NGT is
defined internally by DOT
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APPENDIX B
JUSTIFICATION FOR OMITTING SHEAR STRESSES

(The following Appendix is taken from [Ref. 9])

The shear stress distribution through a beam of

rectangular cross-section has a parabolic distribution along

the height of the member. The maximum shear stress, located at

the neutral axis of the beam, is

T,ax = 1.5V/A (B.l)

where Xmax is the maximum shear stress, V is the shear force,

and A is the cross-sectional area of the beam. [Ref. 8]

The normal stress due to bending is given by the equation

<jr = Mc/I (B.2)

where o r
is the maximum normal stress, M is the bending

moment, and I is the cross-sectional moment of inertia which

for this case is bh 3 /12 where b and h are the width and height

respectively of the cross-section.

Redefining the normal stress in terms of the cross-

sectional dimensions yields

cn
= M(h/2)/(bh 3 /12)

or

Cn
= 6M/hA (B.3)

The ratio of the maximum shear stress to the normal stress

due to bending, is denoted by r and given by the expression:

r = Tmax/On (B.4)
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Substituting Equations (B.l) and (B.3) into Equation (B.4)

yields

r = (1.5V/A) / (6M/hA)

or

r = Vh/4M (B.5)

For the cases investigated in this study, the maximum value r

can attain is when the loading is that of a uniformly

distributed load, p y
. Then, where:

V = p y
L (B.6)

M = p y
L 2 /2 (B.7)

which upon substitution into Equation (B.8) yields

r = (p y
L)h/4 (p y

L 2 /2)

which simplifies to

r = h/2L (B.8)

The use of the beam equation requires the length of the

beam to be at a minimum ten times the height, that is:

L > lOh (B.9)

To maximize the value of r, let L equal lOh, the minimum

allowable length. Substitutiing this value of L into Equation

(B.8) yields

r < h/2 (lOh)

or simply

r < 1/20 (B.10)

Hence, the maximum shear stress accounts for less than 5% of

the bending stress developed in the structure. Five percent is

high considering this analysis over-assumed the value of the
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shear stress by assigning the maximum shear stress to the

entire cross-section of the beam. Moreover, at the outermost

fibers where Gr is a maximum, the shear stress is zero.

Therefore, under the circumstances of this study, the addition

of shear stresses was deemed to be unwarranted.
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APPENDIX C
ARCH_OPTIMIZATION COMPUTER CODE

PROGRAM ARCH_OPTIMI2ATION
**********************************************************************
* *

* ARCH OPTIMIZATION ANALYSIS CODE *

* *

**********************************************************************
*

* ALPHA. .. .TRANSFORMATION ANGLE OF ELEMENT (ANGLE TO X-AXIS)
* ANGLE. .. .TOTAL ANGLE OF ARCH (IN DEGREES)
* BAVE THE AVERAGE BASE DIMENSION ACROSS AN ELEMENT
* BASE DOT ARRAY CONTAINING THE ELEMENTAL BASE DIMENSIONS
* BASEL DOT ARRAY CONTAINING THE ELEMENTAL BASE DIMENSIONS LOWER
* SIDE CONSTRAINT
* BASEU....DOT ARRAY CONTAINING THE ELEMENTAL BASE DIMENSIONS UPPER
* SIDE CONSTRAINT

BETA TRANSFORMATION ANGLE OF ELEMENT (ANGLE TO Y-AXIS)
B_l BOUNDARY TERMS APPLIED AT END "1"

B 2 BOUNDARY TERMS APPLIED AT END "2"

CT, . . ,C5. CONSTANTS RELATED TO ELEMENT STIFFNESS COEFFICIENTS
CLAN CONCENTRATED LOAD APPLICATION NODE (THE NODE FX,FY,FM ARE

APPLIED
COUNT COUNTS THE NUMBER OF ITERATIONS COMPLETED
DOF DEGREE OF FREEDOMS (UNKNOWN DISPLACEMENTS & SLOPES)."
DSN DESIGN VARIABLE FOR EACH ELEMENT
DESIGN... DOT ARRAY CONTAINING THE ELEMENTAL BASE AND HEIGHT DIMENSIONS
DESIGNL..DOT ARRAY CONTAINING THE ELEMENTAL BASE AND HEIGHT DIMENSIONS

LOWER SIDE CONTRAINT
DESIGNU..DOT ARRAY CONTAINING THE ELEMENTAL BASE AND HEIGHT DIMENSIONS

UPPER SIDE CONSTRAINT
DV1BG DESIGN VARIABLE #1 (BASE DIMENSION) INITIAL ESTIMATE
DV1LO DESIGN VARIABLE #1 (BASE DIMENSION) LOWER SIDE CONSTRAINT
DV1UP DESIGN VARIABLE #1 (BASE DIMENSION) UPPER SIDE CONSTRAINT
DV2BG DESIGN VARIABLE #2 (HEIGHT DIMENSION) INITIAL ESTIMATE
DV2LO DESIGN VARIABLE #2 (HEIGHT DIMENSION) LOWER SIDE CONSTRAINT
DV2UP DESIGN VARIABLE #2 (HEIGHT DIMENSION) UPPER SIDE CONSTRAINT
EK 6X6 ELEMENT STIFFNESS MATRIX IN LOCAL X,Y COORDINATES
EKPR 6X6 ELEMENT STIFFNESS MATRIX IN ELEMENT LOCAL COORDINATES
ELEN LENGTH OF ELEMENT
F FORCE VECTOR OF SYSTEM
FA CONSTANT DISTRIBUTED LOAD OUTWARD FROM END TO END
FM CONCENTRATED MOMENT AT FREE END
FX CONCENTRATED LOAD IN X DIRECTION AT FREE END
FY CONCENTRATED LOAD IN Y DIRECTION AT FREE END
G THE ARRAY OF CONSTRAINT FUNCTIONS
GAMMA 6X6 ELEMENT TRANSFORMATION MATRIX
GK (NDOF)X(NDOF) GLOBAL STIFFNESS MATRIX
HAVE THE AVERAGE HEIGHT DIM. ACROSS THE ELEMENT
HGT DOT ARRAY CONTAINING THE ELEMENTAL HEIGHT DIMENSIONS
HGTL DOT ARRAY CONTAINING THE ELEMENTAL HEIGHT DIMENSIONS

LOWER SIDE CONSTRAINT
HGTU DOT ARRAY CONATINING THE ELEMENTAL HEIGHT DIMENSIONS

UPPER SIDE CONSTAINT
INDSN INITIAL (UNIFORM) DESIGN DIMENSION
INFO DOT PARAMETER USED TO SIGNAL THAT THE OPT IS COMPLETE
IPRINT...DOT PARAMETER USED SELECT THE DATA OUTPUT FORMAT
IPRM DOT SELECTABLE INTEGER PARAMETERS
ITERATE.. THE NUMBER OF TIMES DOT IS TO BE RELOADED WITH THE

PRECEEDING DATA
IWK DOT INTERNAL WORK SPACE ARRAY
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* METHOD... DOT PARAMETER USED TO DEFINE THE OPTIMIZATION METHOD
* MINMAX...DOT PARAMETER USED TO MINIMIZE/MAXIMIZE THE PROBLEM
* NCON NUMBER OF DESIGN CONSTRAINTS
* NDOF NUMBER OF DEGREES OF FREEDOM
* NDV NUMBER OF DESIGN VARIABLES
* NEL NUMBER OF ELEMENTS
* NRIWK....DOT INTERNAL WORK SPACE ARRAY DIMENSION
* NRWK DOT INTERNAL WORK SPACE ARRAY DIMENSION
* NSNP NUMBER OF SYSTEM NODAL POINTS
* OBJ THE OBJECTIVE FUNCTION OF THE OPTIMIZATION
* OPTDCS. . .OPTIMIZATION DECISION TO OPTIMIZE THE PROBLEM OR NOT
* PI. . .P5. .PARAMETER DIMENSION CORRESPONDING TO THE NEL, NSNP, NCON,
* NDOF, AND NDV RESPECTIVELY
* PHI SUBTENDED ELELENT ANGLE (ALSO, PHIANG IN DEGREES)
* PRCSN....THE PRECISION DESIRED TO SOLVE THE FEM SYSTEM OF EQUATIONS
* RADIUS. . .ARCH RADIUS
* RPRM DOT SELECTABLE REAL PARAMETERS
* SIGMA_B..THE ELEMENTAL NORMAL STRESS DUE TO BENDING
* SIGMA_N..THE ELEMENTAL NORMAL STRESS DUE TO AXIAL FORCES
* SIGMA_T..THE MAXIMUM TOTAL STRESS IN EACH ELEMENT
* U THE "DISPLACEMENT" VECTOR OF THE SYSTEM OF LINEAR EQUATIONS
* WK DOT INTERNAL WORK AREA
* X GLOBAL HORIZONTAL COORDINATE
* Y GLOBAL VERTICAL COORDINATE
* YIELD. .. .YIELD STRENGTH OF THE ARCH MATERIAL
* YOUNG .... YOUNG ' S MODULUS OF THE ARCH MATERIAL
************************************************************************
C ... .declare the variables

INCLUDE 'ARCH_COM.FOR'
C
C ....read the input parameters

OPEN(8, FILE- 'ARCH_IN.DAT' , STATUS-' OLD'

)

READ ( 8 , * ) ANGLE , RADIUS , YOUNG , YI ELD , NEL , METHOD , I PRINT , DVlBG

,

& DV1LO , DV1UP , DV2BG , DV2LO , DV2UP , CLAN , FX , FY , FM , FA, OPTDCS

,

& ITERATE , PRCSN , BX1 , BYl , BMl , BX2 , BY2 , BM2 , LABEL
C
C ... .define constants

NSNP - NEL + 1

NDOF - 3*NSNP
NCON - 3*NSNP
NDV - 2*NSNP

C
C ....determine the system nodal coord and element orientation....

CALL GEOMETRY ( NEL , NSNP , ANGLE , RADIUS ,X, Y, ALPHA, BETA, ELEN

)

C
C ....define the size of the work arrays for DOT

NRWK - 38800
NRIWK - 1000

C
C ... .optimize the problem

CALL OPTIMIZATIONJTOOL
C
C ....compile and format the output

CALL ARCH_OUTPUT
C

END
************************************************************************
* *

SUBROUTINE GEOMETRY ( NEL , NSNP , ANGLE , RADIUS , X, Y, ALPHA, BETA, ELEN

)
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c ...............................................................
C

I
This routine is used by main ARCHJDPTIMIZATION to generate

C the x-, y-coordinates of each system node, to determine
C the orientation of each element, and to calculate the
C

I
length of each element.

C ............. .-———....«.—............»_.._.._...__....
C ....declare the variables

,

INTEGER NEL,NSNP,P1,P2

PARAMETER ( Pl-32 , P2-33

)

REAL ANGLE, RADIUS, ELEN,X(P2) ,Y(P2) , ALPHA (PI) , BETA (Pi)

,

& PI,PHI,ANG,YNUM,XDEN

PARAMETER ( PI-3

.

141593 )

C
C ... .determine the geometric constants

PHI - (ANGLE/NEL)*( PI/180.0)
C

X(l) - 0.0
Y(l) - 0.0

ANG -0.0
C

DO 100 i-1, NEL
ANG - ANG + PHI

X(i+1) - RADIUS * (1.0 - COS(ANG))
Y(i+1) - RADIUS * SIN(ANG)

YNUM - ( Y( i+1) - Y( i )

)

XDEN - (X(i+1) - X(i) )

ALPHA(i) - ATAN2( YNUM, XDEN)
BETA(i) - (PI/2.0) - ALPHA(i)

100 CONTINUE
C
C ....determine the length of each element

ELEN - SQRT(X(2)**2.0 + Y(2)**2.0)
C

RETURN
END

**********************************************************************
* *

SUBROUTINE OPTIMIZATIONJTOOL
C ..............................................................
C This subroutine directs the program flow optimization decision
C i.e., optimize the problem or not. It also serves to set up &

C execute the DOT optimization software.
C ._.....-..-......_.........—...——.—.——..—...-.——
C ... .declare the variables

INCLUDE 'ARCH_COM.FOR'

INTEGER i

C
C ....zero out the RPRM and IPRM arrays

DO 100 i-1, 20
RPRM(i) - 0.0
IPRM(i) -

100 CONTINUE
C
C ....initialize COUNT

COUNT - 1
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c
C ....refine the constraint tolerence

,

RPRM(2) - 0.0001
RPRM(3) - 0.001

C
C ....turn off DOT'S auto scaling

,

IPRM(2) - -1

C
C ....increase DOT'S default number of iterations ,

IPRM(3) - 1000
IPRM(8) - 1000

C
C ....increase DOT'S number of consecutive convergence criteria

IPRM(4) - 3

IPRM(9) - 3

C
C ....define MINMAX--1 to minimize the objective function

MINMAX - -1
C
C ....initialize the design variable limits and best guess

DO 200 i-l,NSNP
BASE( i ) - DV1BG
BASEM i ) - DV1LO
BASEU(i) - DV1UP

HGT(i) - DV2BG
HGTL( i) - DV2LO
HGTU( i ) - DV2UP

200 CONTINUE
C
C ....combine base and HGT arrays into design array

DO 250 i-l,NSNP
j-NSNP+i

DESIGN( i ) - BASE( i

)

DESIGNL(i) - BASEL(i)
DESIGNU( i ) - BASEU( i

)

DESIGN( j ) - HGT( i

)

DESIGNL( j ) - HGTL( i)
DESIGNU( j ) - HGTU( i)

250 CONTINUE
C

..make optimization decision

IF (OPTDCS .NE. 1) THEN
CALL EVAL
RETURN

ENDIF
C
C ....ready to optimize

INFO -
C

300 CALL DOT ( INFO, METHOD, IPRINT,NDV,NCON, DESIGN , DESIGNL , DESIGNU,
& OBJ , MINMAX , G , RPRM , I PRM , WK , NRWK , IWR , NRIWK

]

C
C ....evaluate the objective function and constraints

IF (INFO .GT. 0) THEN
CALL EVAL
GOTO 300

END IF
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c
C ....refine the solution vector by reoptimizing

IF (COUNT .LT. ITERATE) THEN
INFO -

COUNT - COUNT+1
GOTO 300

ENDIF
C

RETURN
END

**********************************************************************
* *

SUBROUTINE EVAL
C ....—..........-.————.................................
C This subroutine is used to evaluate the Objective function,
C constraint functions, and side constraints of the optimization
C problem.
C ..«_.._..-.--———-—...—.......-——.-...-.___.._....
C ....declare the variables

INCLUDE 'ARCH_COM.FOR'

INTEGER i,j
C

"

C ....separate the design array into base and HGT arrays
DO 50 i-l,NSNP

j-NSNP+i
BASE(i) - DESIGN(i)
HGT( i) - DESIGN( j

)

50 CONTINUE
C
C ....calculate the objective function

OBJ - 0.0
C

DO 100 i-l/NEL
BAVE(i) - (BASE( i)+BASE( i+1) )/2.0
HAVE(i) - (HGT(i)+HGT(i+l) )/2.0

OBJ - OBJ + BAVE( i ) *HAVE( i ) *ELEN
100 CONTINUE

C
C ....initialize the design constraint vector

DO 200 i-l,NCON
G(i) - 0.0

200 CONTINUE
C
C ....determine the design constraints

CALL ARCH_STRESS
C

DO 210 i-l,NSNP
j-i+NSNP

k-i+(2*NSNP)
G(i) - (SIGMA T(i)/YIELD) - 1.0
G(j) - BASE(iT-(3.0*HGT(i)

)

G(k) - HGT(i)-(10.0*BASE(i)

)

210 CONTINUE
C

RETURN
END

**********************************************************************
* *

SUBROUTINE ARCH STRESS
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c ......................>...................._._....__._.._„.__
C This subroutine is used to perform the Finite Element analysis
C of the stresses developed in an arch or beam for a given load-
C ing.
C ..............................................................
C ....declare the variables

INCLUDE 'ARCH_COM.FOR'

INTEGER IPVT(99)

REAL F(P4)

REAL* 8 BK(P4,P4) ,BF(P4) ,BU(P4) ,FAC(9801) , WORK (99)

C
C ....form the element and system matrices

CALL FORM
C
C ....form the Force vector, F

CALL FORCE_VECTOR { NEL, NDOF , ELEN, ALPHA, BETA, FA, F)
C
C ....set the boundary conditiona and loads

CALL BNDARY ( NDOF , GK , CLAN, FX , FY , FM , F , BX1 , BY1 , BMl , BX2 , BY2 TbM2 )

C
C ....solve the system of equations

IF (PRCSN .EQ. 2) THEN
C ....change GK and F arrays to double precision

CALL UPSCALE ( NDOF ,GK , F, BK , BF

)

C ....solve the system of equations
CALL DL2ARG ( NDOF , BK , P4 , BF , 1 , BU, FAC, IPVT, WORK

)

C ....change BU array to single presicion
CALL DOWNSCALE (NDOF,BU,U)

ELSE
C ... .solve the system of equations

CALL L2ARG ( NDOF , GK , P4 , F , 1 , U , FAC , IPVT , WORK

)

ENDIF
C
C ... .determine the stress distribution

CALL STRESS
C

RETURN
END

**********************************************************************
* *

SUBROUTINE FORM
C ..............................................................
C This subroutine is used to construct the global stiffness mat-
C rix for the arch problem.
C ..... ......................................................
C ....declare the variables

INCLUDE 'ARCH_COM.FOR'

INTEGER IEL,I,J,K,II,JJ,KK,III, J J

J

REAL C1,C2,C3,C4,C5,CA,CB,EK(P1,6,6) , GAMMA (6,6) ,EKGA(6,6) ,

& GAEKGA(6,6) ,BH,BH3

C
C ... .define the constants Cx

CI - YOUNG/ELEN
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DO 220 I - 1,6
DO 215 J - 1,6

DO 210 K - 1,6
EKGA(I,J) - EKGA(I,J) + EKPR

(

IEL , I , K ) *GAMMA( K , J

)

210 CONTINUE
215 CONTINUE
220 CONTINUE

C
C ... .determine the GAEKGA array

DO 240 I - 1,6
DO 235 J - 1,6

DO 230 K - 1,6
GAEKGA(I,J) - GAEKGAd, J )+GAMMA( K , I ) *EKGA( K, J

)

230 CONTINUE
235 CONTINUE
240 CONTINUE

C
C ....copy the GAEKGA array into the EK array

DO 260 I - 1,6
DO 250 J - 1,6

EK(IEL,I,J) - GAEKGA(I, J)
250 CONTINUE
260 CONTINUE

"

120 CONTINUE
C
C ....initialize the GK array

DO 150 I - 1, NDOF
DO 140 J - 1, NDOF

GK( I , J) - 0.0
140 CONTINUE
150 CONTINUE

C
C ... .construct the GK matrix

DO 300 IEL - 1, NEL
II - 3MIEL-1)

DO 290 J - 1, 6

JJ - II + J
DO 280 K - 1, 6

KK - II + K
GK(JJ,KK) - GK( JJ,KK)+EK( IEL, J,K)

280 CONTINUE
290 CONTINUE
300 CONTINUE

C
RETURN
END

**********************************************************************
* *

SUBROUTINE FORCE_VECTOR ( NEL , NDOF , ELEN, ALPHA, BETA, FA, F

)

C ..............................................................
C This subroutine is used to construct the force vector for the
C FEM problem specified.
C ..._.............._....._.._.._.___......._........--.....-—
C ... .declare the variables

INTEGER NEL , NDOF , i , II , 12 , 13 , Pi , P4
C

PARAMETER (Pl-3 2, P 4-99)
C

REAL ELEN, ALPHA (Pi) ,BETA(Pl) , FA,F(P4)
C
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C2 - (1.0/ELEN)**2.0
C3 - (1.0)/(2.0*ELEN)
C4 - (1.0)/3.0
C5 - (1.0)/6.0

c
c .initialize the work arrays

DO 120 IEL -1,NEL
DO 100 I - 1,6

DO 90 J- 1,6
EKPR( IEL, I, J) -

GAMMA( I , J) - 0.0
EKGA( I, J) - 0.0

GAEKGA(I,J) - 0.0
EK( IEL, I, J) - 0.0

90 CONTINUE
100 CONTINUE

....calculate the area and inertia terms
BH - BAVE(IEL)*HAVE( IEL)

BH3 - BAVE( IEL) *( HAVE ( I EL)** 3.0)

EKPR
EKPR
EKPR
EKPR
EKPR
EKPR
EKPR
EKPR
EKPR
EKPR
EKPR
EKPR
EKPR
EKPR
EKPR
EKPR
EKPR
EKPR
EKPR
EKPR

determine
1,1)IEL,

IEL,
IEL,
IEL,
IEL,
IEL,
IEL,
IEL,
IEL,
IEL,
IEL,
IEL,
IEL,
IEL,
IEL,
IEL,
IEL,
IEL,
IEL,
IEL,

4)
2)
3)

5)
6)
2)
3)
5)
6)
1)
4)
2)
3)

5)
6)
2)
3)
5)
6)

the EKPR
- C1*BH
- -C1*BH
- C1*C2
- C1*C3
- -C1*C2
- C1*C3
- C1*C3
- C1*C4
- -C1*C3
- C1*C5
- -C1*BH
- C1*BH
- -C1*C2
- -C1*C3
- C1*C2
- -C1*C3
- C1*C3
- C1*C5
- -C1*C3
- C1*C4

matrix

*BH3
*BH3
*BH3
*BH3
*BH3
*BH3
*BH3
*BH3

*BH3
*BH3
*BH3
*BH3
*BH3
*BH3
*BH3
*BH3

.determine the GAMMA matrix,
CA - COS(ALPHA(IEL)

)

COS(BETA(IEL) )CB -

GAMMA (

1

GAMMA (

1

GAMMA (2
GAMMA (2
GAMMA (

3

GAMMA (

4

GAMMA (

4

GAMMA (

5

GAMMA (

5

GAMMA (6

1)
2)
1)
2)
3)
4)
5)
4)
5)
6)

CA
CB

-CB
CA
1.0
CA
CB

-CB
CA
1.0

determine the EKGA array.
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C . ... form the F-vector
F(l) - (ELEN/2.0) * (-COS(BETAd) ) )

F(2) - (ELEN/2.0) * ( COS ( ALPHA( 1 ) )

)

F(3) - 0.0
C

DO 100 i-2,NEL
11 - (i-l)*3 + 1

12 - (i-l)*3 + 2

13 - (i-l)*3 + 3

C
F(I1) - (ELEN/2.0)*(-COS(BETA(i) )

)

& +(ELEN/2.0)*(-COS(BETA(i-l) )

)

F(I2) - ( ELEN/2.0 )*( COS(ALPHA( i ))

)

& +( ELEN/2.0)*(COS(ALPHA( i-1) )

)

F(I3) - 0.0
100 CONTINUE

C
F(NDOF-2) - ( ELEN/2.0 ) *(-COS( BETA(NEL) ) )

F(NDOF-l) - ( ELEN/2.0 )MCOS(ALPHA(NEL) ) )

F(NDOF) - 0.0
C
C .... scale the F-vector by FA _

DO 200 i-l,NDOF
F( i ) - FA*F( i

)

200 CONTINUE
C

RETURN
END

**********************************************************************
* *

SUBROUTINE BNDARY ( NDOF , GK , CLAN, FX, FY , FM, F, BXl , BYl , BMl , BX2 ,

& BY2,BM2)
C .._____...__._........._.______._____...._.___..__.......»....
C This subroutine is used to impose the boundary conditions upon
C the global stiffness matrix and force vector.
C ..............................................................
C ... .declare the variables

INTEGER NDOF , BXl , BYl , BMl , BX2 , BY2 , BM2 , CLAN, i ,N, II, 12, 13 , P4

PARAMETER (P4-9 9)

REAL GK(P4,P4) , FX, FY, FM, F( P4

)

C
C ....invoke the essential boundary conditions

IF (BXl .EQ. 1) THEN
CALL IMPOSE_BC ( NDOF,GK, 1 , F

)

ENDIF
C

IF (BYl .EQ. 1) THEN
CALL IMPOSE_BC ( NDOF , GK, 2, F

)

ENDIF
C

IF (BMl .EQ. 1) THEN
CALL IMPOSE_BC ( NDOF , GK , 3 , F

)

ENDIF
C

IF (BX2 .EQ. 1) THEN
N-NDOF-2
CALL IMPOSE_BC ( NDOF , GK,N, F

)

ENDIF
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c

IF (BY2 .EQ. 1) THEN
N-NDOF-1
CALL IMPOSE_BC ( NDOF , GK,N, F)

ENDIF
C

IF (BM2 .EQ. 1) THEN
CALL IMPOSE_BC ( NDOF , GK , NDOF , F

)

ENDIF
C
C ....add the concentrated load to the force vector

I1-(CLAN-1)*3+1
l2-(CLAN-l)*3+2
l3-(CLAN-l)*3+3

C
F(I1)-F(I1)+FX
F( I2)-F( I2)+FY
F(I3)-F(I3)+FM

C
RETURN
END

**********************************************************************
* *

SUBROUTINE IMPOSE_BC ( NDOF , GK , N, F

)

C ..............................................................
C This subroutine is used to do the redundant leg work of impos-
C ing the boundary conditions.
C ..............................................................
C ... .declare the variables

INTEGER NDOF,N,i,P4

PARAMETER! P4-99)

REAL GK(P4,P4) ,F(P4)
C
C ....impose the boundary condition on the GK and F arrays

DO 100 i-l,NDOF
GK(N, i ) - 0.0

100 CONTINUE
GK(N,N) -1.0

F(N) - 0.0
C

RETURN
END

**********************************************************************
* *

SUBROUTINE UPSCALE ( NDOF , GK , F , BK , BF

)

C ................._........................——..-.——.--.
C This subroutine is used to change the stiffness matrix & force
C vector from single precision to double precision in order to
C solve the linear system of equations in double precision.
C ..............................................................
C ... .declare the variables

INTEGER NDOF,i, j , P4

PARAMETER (P4-99)

REAL GK(P4,P4) ,F(P4)

REAL*8 BK(P4,P4) ,BF(P4)
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c
C ....generate the doubleprecision compliments of GK and F

DO 110 i-l,NDOF
DO 100 j-l,NDOF

BK(i, j ) - GK(i, j)
100 CONTINUE

BF( i) - F( i

)

110 CONTINUE
C

RETURN
END

**********************************************************************
* *

SUBROUTINE DOWNSCALE( NDOF , BU, U)
C ..............................................................
C This subroutine is used to do down scale the double precision
C solution of the linear system of equations back to single pre-
C cision. DOT could have problems with double precision numbersl
C ..............................................................
C ....declare the variables

INTEGER NDOF, i,P4

PARAMETER (P4-99) '.

REAL U(P4>

REAL*8 BU(P4)
C
C ....generate the doubleprecision compliments of GK and F

DO 100 i-l,NDOF
U( i) - BU(i)

100 CONTINUE
C

RETURN
END

**********************************************************************
* *

SUBROUTINE STRESS
C ...................................................——.—.—
C This subroutine computes the stress at each nodal point.
C ..............................................................
C ....declarations

INCLUDE 'ARCH_COM.FOR'

INTEGER 11,12,13,14,15,16

REAL CA1,CB1,K1,K2,FPR(P4,6) ,UPR(6) ,NORMl ,NOR«2

,

6 BEND1,BEND2
C
C ....determine local forces from stiffness and displacement....

DO 100 i-1, NEL
Il-(i-l)*3+l
I2-(i-l)*3+2
l3-( i-l)*3+3
I4-(i)*3+l
l5-(i)*3+2
l6-(i)*3+3

C
CB1- COS(BETA(i) )
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CM- COS(ALPHA(i) )

C
UPR(l)- U(I1)*CA1 + U(I2)*CB1
UPR(2)- -U(I1)*CB1 + U(I2)*CA1
UPR(3)- U(I3)
UPR(4)- U(I4)*CA1 + U(I5)*CB1
UPR(5)- -U(I4)*CB1 + U(I5)*CA1
UPR(6)- U(I6)

C
DO 250 L-1,6

FPR( i,L)- 0.0
250 CONTINUE

C
DO 300 J-1,6

DO 350 K-1,6
FPR(i,J)- FPR(i,J) + EKPR( i

,

J,K) *UPR(K)
350 CONTINUE
300 CONTINUE
100 CONTINUE

C ....determine the bending and normal stresses

SIGMA_N(1) - ABS(FPR(1,1)*( 1 . 0/( BASE ( 1 ) *HGT( 1 ) ) )

)

SIGMA_B(1) - ABS(FPR(1,3)*(6.0/(BASE(1)*(HGT(1)**2.0) ) ) ).

SIGMA_T(1) - SIGMA_B(1) + SIGMA_N(1)

DO 400 i-2,NEL

Kl - 1.0/(BASE(i )*HGT(i)

)

K2 - 6.0/(BASE( i )*(HGT( i )**2.0)

)

NORM1 - ABS( FPR( i ,1) *K1)
NORM2 - ABS( FPR( i-1,4 )*K1 )

BEND1 - ABS(F?R( i

,

3)*K2)
BEND2 - ABS( FPR( i-1,6) *K2)

SIGMA_N(i) - (NORM1+NORM2)/2.0
SIGMA_B(i) - (BENDl+BEND2)/2.0

SIGMA_T(i) - SIGMA_B(i) + SIGMA_N(i)

400 CONTINUE

SIGMA_N(NSNP) - ABS ( FPR( NEL , 4 ) * ( 1 . 0/( BASE( NSNP ) *HGT( NSNP ) ) )

)

SIGMA_B(NSNP) - ABS ( FPR( NEL, 6 )

*

& (6.0/(BASE(NSNP)*(HGT(NSNP)**2.0) ) )

)

SIGMA_T(NSNP) - SIGMA_B( NSNP ) + SIGMA_N( NSNP

)

C
RETURN
END

**********************************************************************
* *

SUBROUTINE ARCH_OUTPUT
C ....................-........................>..........-.....
C This subroutine formats the final results and output of the
C optimization problem and stores it in a file named ARCH_OUT.DAT
C —..—....-...-..................................—.—.—..
C ....declare variables

INCLUDE 'ARCH COM. FOR'
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REAL VOL, VOLUME

110
115

120
125

210
220

300

310

....open output file and write header
OPEN(9, FILE- 'ARCH OUT. DAT' , STATUS- ' UNKNOWN'

)

WRITE(9,100)
WRITE ( 9,100)
WRITE(9,105)

LABEL
' OPTIMIZATION SOLUTION'

100
105

C
C

FORMAT(/5X,A)
FORMAT! 5X,A)

.... section "

WRITE(9,100)
WRITE(9,110 )

WRITE(9,110 )

A) Problem Parameters:
Arch Angle :

' , ANGLE,
Arch Radius:', RADIUS,

WRITE(9,115) ' No of Design Var
F0RMAT(8X,A,F12.3,T38,A,F12.1)
FORMAT(8X,A,I7,T38,A,I10)

NDV,

Youngs Modulus: ' , YOUNG
Yield Strength: ', YIELD

' No of Elements: ' ,NEL

. . . .section "B"
WRITE(9,100)
WRITE(9,120)
WRITE(9,120)
WRITE(9,125)
WRITE( 9,125)
WRITE! 9,120)

B) Derived Constants:'
No of System Nodal Points ...' ,NSNP
No of Degrees of Freedom. ...' ,NDOF
Length per Element ',ELEN
Phi Angle per Element ',PHIANG
Number of Iterations ', ITERATE

FORMAT! 8X,A, 16)
F0RMAT(8X,A,F12.4)

.... section
WRITE(9,100)
WRITE(9, 125)
WRITE(9,125)
WRITE(9,125)
WRITE(9,125)

'C . .

' C)
'FX.
'FY.
'FM.

Structure Loading:'
.

.

' ,FX
.

.

' ,FY
.

.

' , FM
'FA ' ,FA

....section "D"
WRITE(9,100) ' D) Elemental Dimensions and Stress Distribution:
WRITE ( 9,210) 'Node' , 'Height' , 'Base' , 'Length' , 'Area'

FORMAT(8X,A,T21,A,T36,A,T49,A,T6 2,A)
FORMAT(8X,I4,T17,F10.5,T32,F10.5,T48,F8.5,T60,F8.5)
VOLUME - 0.0

DO 300 i-l,NSNP
AREA - BASE( i)*HGT(i)
WRITE (9,220) i,HGT( i) ,BASE( i) ,ELEN,AREA

CONTINUE

....section "E"
WRITE(9,100) ' E) Objective Function:'

WRITE(9,310) ' Total structure Volume:', OBJ
F0RMAT(/12X,A,F12.6/)

WRITE(9,330) ' Node ',' Normal Stress ',' Bending Stress ',' Total

'

DO 320 i-l,NSNP
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WRITE(9,340) i,SIGMA_N( i ) ,SIGMA_B( i ) ,SIGMA_T(

i

320 CONTINUE
3 30 FORMAT

(

8X,A,T18,A,T35,A,T57,A)
340 F0RMAT(8X,I4,T15,F14.1,T32,F14.1,T49,F14.1)

C
C ....section "F"

WRITE(9,100) ' F) Boundary Conditions:'
WRITE(9,410) 'Node' , 'X-Displ' , 'Y-Displ' , 'Slope'
WRITE(9,430) 1 , BXl , BYl , BMl
WRITE(9,430) NEL+1 , BX2 , BY2 , BM2

C
C ....section "G"

WRITE(9,100) ' G) Solution Vector:'
WRITE ( 9,410) 'Node' , 'X-Displ' , 'Y-Displ' , 'Slope'
DO 400 i-l,NSNP

Il-(i-l)*3+l
l2-(i-l)*3+2
l3-(i-l)*3+3

WRITE(9,420) i,U( II) ,0(12) ,U( 13)
400 CONTINOE
410 FORMAT (T9,A,T17,A,T31,A,T46,A)
420 F0RMAT(7X,I5,3E14.6)
4 30 FORMAT(7X,I5,T20,I4,T3 4,I4,T4 8,I4)

C
RETURN
END
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ARCH_COMMON

....definitions
Pi The maximum number of elements
P2 The maximum number of global nodal points
P3 The maximum number of design constraints
P4 The maximum number of degrees of freedom
p5 The maximum number of design variables

. . . .declare the variables
,

INTEGER NEL , NCON , NSNP , NDOF , NDV , METHOD , MINMAX , INFO , I PRINT

,

& IWK(IOOO) ,NRWK,NRIWK,IPRM(20) , COUNT, OPTDCS , ITERATE

,

& PRCSN , CLAN , BX1 , BY1 , BM1 , BX2 , BY2 , BM2 , PI , P2 , P3 , P4 , P5

PARAMETER! Pl-32, P2-3 3, P3-96 , P4-99 , P5-64

)

REAL ANGLE, RADIUS, ELEN,X(P2) ,Y(P2) , ALPHA ( PI ) , BETA (PI)

,

YOUNG, YIELD, WK( 388 00 ) ,RPRM(20) ,OBJ,G(P3) ,

DV1BG,DV1L0,DV1UP,BASE(P1) , BASEL (PI

)

,BASEU(Pl) ,

DV2BG,DV2L0,DV2UP,HGT(P1) ,HGTL(P1) ,HGTU(Pl) ,

DESIGN(P5) ,DESIGNL(P5) ,DESIGNU(P5) ,

FA,FX,FY,FM,U(P4) ,SIGMA_T(P4) ,SIGMA_N(P4)

,

SIGMA_B(P4 ) ,BAVE( Pi)

,

HAVE (Pi) ,GK(P4,P4) , EKPR( P4 , 6 , 6

)

CHARACTER*30 LABEL

. .

.

.make in common
COMMON NEL, NCON, NSNP, NDOF, NDV, METHOD, MINMAX, INFO, IPRINT, IWK,

& NRWK,NRIWK, I PRM, COUNT, OPTDCS, ITERATE, PRCSN, CLAN,
& BX1,BY1,BM1,BX2,BY2,BM2,
& ANGLE, RADIUS ,ELEN,X,Y, ALPHA, BETA, YOUNG, YIELD,
& WK , RPRM , OBJ , G , DV1BG , DVlLO , DV1UP , BASE , BASEL , BASEU

,

& DV2BG , DV2LO , DV2UP , HGT , HGTL , HGTU

,

& DESIGN, DESIGNL,DESIGNU,
& FA , FX , F Y , FM , U , S I GMA_T , LABEL , S I GMA_N , S IGMA_B

,

& BAVE,HAVE,GK,EKPR
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APPENDIX D
VALIDATION CASES

Validation #1

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 0.003 Youngs Modulus: 30000000.0
Arch Radius: 1000000.000 Yield Strength: 52000.0
No of Design Var: 10 No of Elements: 4

B) Derived Constants:
No of System Nodal Points... 5

No of Degrees of Freedom. ... 15
Length per Element 11.2500
Number of Iterations 1

C) Structure Loading:
FX 1000.0000
FY 0.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 3.00000 1.50000 11.24996 4.50000
2 3.00000 1.50000 11.24996 4.50000
3 3.00000 1.50000 11.24996 4.50000
4 3.00000 1.50000 11.24996 4.50000
5 3.00000 1.50000 11.24996 4.50000

E) Objective Function:
Total structure Volume: 202.499207

Node Normal Stress Bending Stress Total
1 0.0 19999.7 19999.7
2 0.0 14999.7 14999.7
3 0.0 9999.8 9999.8
4 0.0 4999.9 4999.9
5 0.0 0.0 0.0

F) Boundary Conditions:
Node X-Displ Y-Displ Slope11 1 1

5

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 0.000000E+00 O.OOOOOOE+00 0.000000E+00
2 0.257807E-01 0.112327E-08 -0 . 437492E-02
3 0.937478E-01 0.409056E-08 -0 . 749985E-02
4 0.189839E+00 0.828721E-08 -0

.

937481E-02
5 0.299993E+00 0.130985E-07 -0 . 999979E-02
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Validation #2

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 0.003 Youngs Modulus: 30000000.0
Arch Radius: 1000000.000 Yield Strength: 52000.0
No of Design Vac: 10 No of Elements: 4

B) Derived Constants:
No of System Nodal Points... 5

No of Degrees of Freedom. ... 15
Length per Element 11.2500
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY 1000.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 3.00000 1.50000 11.24996 4.50000
2 3.00000 1.50000 11.24996 4.50000
3 3.00000 1.50000 11.24996 4.50000
4 3.00000 1.50000 11.24996 4.50000
5 3.00000 1.50000 11.24996 4.50000

E) Objective Function:
Total structure Volume: 202.499207

Node Normal Stress Bending Stress Total
1 222.2 0.0 222.2
2 222.2 0.0 222.2
3 222.2 0.0 222.2
4 222.2 0.0 222.2
5 222.2 0.0 222.2

F) Boundary Conditions:
Node X-Displ Y-Displ Slope11 1 1

5

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 0.000000E+00 0.000000E+00 O.OOOOOOE+00
2 0.112327E-08 0.833330E-04 -0 . 191234E-09
3 0.409056E-08 0.166666E-03 -0 . 327829E-09
4 0.828721E-08 0.249999E-03 -0 . 409786E-09
5 0.130985E-07 0.333332E-03 -0 . 437105E-09
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Validation #3

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 0.003
Arch Radius: 1000000.000
No of Design Var: 10

Youngs Modulus
Yield Strength
No of Elements:

30000000.0
52000.0

4

B) Derived Constants:
No of System Nodal Points... 5

No of Degrees of Freedom.... 15
Length per Element 11.2500
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY 0.0000
FM 10000.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length

00000
00000
00000
00000
00000

50000
50000
50000
50000
50000

11.24996
11.24996
11.24996
11.24996
11.24996

Area
50000
50000
50000
50000
50000

E) Objective Function:
Total structure Volume: 202.499207

Normal Stress Bending Stress
0.0 4444.4

Node
1

2

3

4

5

4444
4444
4444
4444

F) Boundary Conditions:
Node X-Displ Y-Displ11 1

5

G) Solution Vector:
Node X-Displ Y-Displ

1 O.OOOOOOE+OO 0.000000E+00
2 -0.624985E-02 -0 . 273190E-09
3 -0.249994E-01 -0 . 109276E-08
4 -0.562488E-01 -0 . 245871E-08
5 -0.999979E-01 -0 . 437105E-08

Total
4444
4444
4444
4444
4444

Slope

Slope
OOOOOOE+00
111109E-02
222218E-02
333328E-02
444438E-02
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Validation #4

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000
Arch Radius: 45.000
No of Design Var: 10

Youngs Modulus:
Yield Strength:
No of Elements:

30000000.0
52000.0

4

B) Derived Constants:
No of System Nodal Points... 5

No of Degrees of Freedom. ... 15
Length per Element 17.5581
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY 1000.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length

00000
00000
00000
00000
00000

50000
50000
50000
50000
50000

17.55813
17.55813
17.55813
17.55813
17.55813

Area
4.50000
4.50000
4.50000
4.50000
4.50000

E) Objective Function:
Total structure Volume: 316.046356

Normal Stress Bending Stress
217.9 19996.8

Node
1

2

3

4

5

201
154
83
43

18475.5
14141.1
7653.6

0.0

F) Boundary Conditions:
Node X-Displ Y-Displ11 1

5

G) Solution Vector:
Node X-Displ

1 0.000000E+00
2 -0.654528E-01
3 -0.223473E+00
4 -0.381495E+00
5 -0.446951E+00

Y-Displ
OOOOOOE+00
.131494E-01
.118865E+00
.355493E+00
.684692E+00

Total
20214.8
18676.8
14295.2
7737.0

43.3

Slope

Slope
000000E+00
750557E-02
138688E-01
181207E-01
196139E-01
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Validation #4

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000
Arch Radius: 45.000
No of Design Var: 14

Youngs Modulus:
Yield Strength:
No of Elements:

30000000.0
52000.0

6

B) Derived Constants:
No of System Nodal Points... 7

No of Degrees of Freedom.... 21
Length per Element 11.7474
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY 1000.000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 3.00000 1.50000 11.74736 4.50000
2 3.00000 1.50000 11.74736 4.50000
3 3.00000 1.50000 11.74736 4.50000
4 3.00000 1.50000 11.74736 4.50000
5 3.00000 1.50000 11.74736 4.50000
6 3.00000 1.50000 11.74736 4.50000
7 3.00000 1.50000 11.74736 4.50000

Objective Function:
Total structure Volume: 317.178711

Normal Stress Bending StressNode
1

2

3

4

5

6

7

220.3
212.8
190.9
155
110
57
29

19988.4
19310.1
17315.2
14139.8
9999.2
5176.4

0.2

F) Boundary Conditions:
Node X-Displ Y-Displ11 1

7

G) Solution Vector:
Node X-Displ

1 0.000000E+00
2 -0.300317E-01
3 -0.112085E+00
4 -0.224178E+00
5 -0.336278E+00
6 -0.418343E+00
7 -0.448382E+00

Y-Displ
000OO0E+OO
404077E-02
381154E-01
124215E+00
270393E+00
468604E+00
696858E+00

Slope

Total
20208
19522
17506
14295
10109
5233

29

Slope
00OOOOE+0O
512948E-02
991003E-02
140157E-01
171665E-01
191473E-01
198230E-01
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Validation #4

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000
Arch Radius: 45.000
No of Design Var: 18

Youngs Modulus
Yield Strength:
No of Elements

30000000.0
52000.0

8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom. ... 27
Length per Element 8.8215
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY 1000.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node

1

2

3

4

5

6

7

8

9

Height
3.00000
3.00000

00000
00000
00000
00000
00000
00000
00000

Base
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000

Length
8.82154
8.82154
8.82154
8.82154
8.82154
8.82154
8.82154
8.82154
8.82154

Area
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000

E) Objective Function:
Total structure Volume: 317.575592

Node Normal Stress Bending Stress
1

2

3

4

5

6

7

8

9

F) Boundary Conditions:
Node X-Displ

1 1

9

Total
221.2 19983.1 20204.3
217.0 19602.4 19819.4
204.4 18467.7 18672.1
184.0 16622.6 16806.6
156.6 14138.1 14294.6
123.0 11109.3 11232.4
84.7 7653.0 7737.7
43.2 3901.8 3944.9
21.9 0.1 22.0

tions

:

Y-Displ SI ope
1 1
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G) Solution Vector:
Node X-Displ Y-Displ

1 0.0O00O0E+0O O.OOOOOOE+00
2 -0.170799E-01 0.174758E-02
3 -0.657226E-01 0.165686E-01
4 -0.138527E+00 0.555485E-01

5 -0.224410E+00 0.126097E+00
6 -0. 310298E+00 0.230817E+00
7 -0.383113E+00 0.367110E+00
8 -0.431768E+00 0.527570E+00
9 -0.448854E+00 0.701109E+00

Slope
O.OOOOOOE+00
0.388006E-02
0.761158E-02
0.110510E-01

0.140661E-01
0.165408E-01
0.183798E-01
0.195124E-01
0.198948E-01

1 0.000000E+00 0.000000E+00 0.000000E+00
2 -0.109773E-01 0.916237E-03 0.311363E-02
3 -0.428386E-01 0.861779E-02 0.615142E-02
4 -0.924699E-01 0.292281E-01 0.903846E-02
5 -0.155017E+00 0.676091E-01 0.117035E-01
6 -0.224357E+00 0.126884E+00 0.140808E-01
7 -0.293705E+00 0.208132E+00 0.161115E-01
8 -0.356268E+00 0.310279E+00 0.177456E-01
9 -0.405923E+00 0.430208E+00 0.189426E-01

10 -0.437804E+00 0.563056E+00 0.196729E-01
11 -0.448790E+00 0.702697E+00 0.199184E-01
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Validation #4

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 45.000 Yield Strength: 52000.0
No of Design var: 26 No of Elements: 12

B) Derived Constants:
No of System Nodal Points... 13
No of Degrees of Freedom. ... 39
Length per Element 5.8863
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY 1000.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 3.00000 1.50000 5.88628 4.50000
2 3.00000 1.50000 5.88628 4.50000
3 3.00000 1.50000 5.88628 4.50000
4 3.00000 1.50000 5.88628 4.50000
5 3.00000 1.50000 5.88628 4.50000
6 3.00000 1.50000 5.88628 4.50000
7 3.00000 1.50000 5.88628 4.50000
8 3.00000 1.50000 5.88628 4.50000
9 3.00000 1.50000 5.88628 4.50000

10 3.00000 1.50000 5.88628 4.50000
11 3.00000 1.50000 5.88628 4.50000
12 3.00000 1.50000 5.88628 4.50000
13 3.00000 1.50000 5.88628 4.50000

E) Objective Function:
Total structure Volume: 317.859253

Node Nori
1

2

3

4

5

6

7

8

9

10
11
12
13

Stress Bending Stress Total
221.7 19973.5 20195.2
219.8 19805.9 20025.8
214.2 19299.1 19513.3
204.9 18461.6 18666.5
192.1 17308.0 17500.2
176.0 15857.4 16033.4
156.9 14135.3 14292.3
135.2 12171.0 12306.2
111.1 9998.4 10109.5
85.0 7653.1 7738.1
57.4 5176.2 5233.7
29.1 2610.7 2639.8
14.7 0.1 14.7
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F) Boundary Conditions:
Node X-Displ Y-Displ

1 1 1

13

Slope

G) Solution Vec
Node

1

2

3

4

5

6

7

X-Dis
0.00000

-0.76486
-0.30075
-0.65752
-0.11225
-0.16640
-0.22452

8 -0.28264
9 -0.33680

10 -0.38331
11 -0.41901
12 -0.44144
13 -0.44910

tor:
Pi
0E + 00
6E-02
0E-01
9E-01
2E+00
6E + 00
3E+00
3E+00
6E + 00
8E + 00
0E + 00
7E+00
OE+00

Y-
00
54
50
17
40
76
12
19
27
36
47

0.58
0.70

Displ
O00OE+0O
4914E-03
4941E-02
2040E-01
1787E-01
4064E-01
7417E+00
3735E+00
4838E+00
9200E+00
4387E+00
7230E+00
4036E+00

Slope
000000
260170
515929
762896
996841
121375
140991
158197
172696
184241
192632
197725
199432

E+00
E-02
E-02
E-02
E-02
E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
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validation #5

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
No of Design Var: 10 No of Elements: 4

B) Derived Constants:
No of System Nodal Points... 5

No of Degrees of Freedom. ... 15
Length per Element 12.4858
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY -5000.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 3.00000 1.50000 12.48578 4.50000
2 3.00000 1.50000 12.48578 4.50000
3 3.00000 1.50000 12.48578 4.50000
4 3.00000 1.50000 12.48578 4.50000
5 3.00000 1.50000 12.48578 4.50000

E) Objective Function:
Total structure Volume: 224.744095

Node Normal Stress Bending Stress Total
1 1231.2 0.0 1231.2
2 1278.8 12338.0 13616.9
3 1273.2 11971.7 13245.0
4 1073.8 1043.2 2116.9
5 927.6 24725.3 25652.9

F) Boundary Conditions:
Node X-Displ Y-Displ Slope11 1

5 1 1

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 0.000000E+00 0.O0000OE+0O 0.302544E-02
2 -0.301621E-01 0.547718E-02 0.131377E-02
3 -0.265139E-01 0.237552E-02 -0

.

205875E-02
4 -0.530910E-02 -0

.

302736E-01 -0

.

357488E-02
5 O.OOOOOOE+00 -0.589432E-01 0.000000E+00

143



Validation #5

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000
Arch Radius: 32.000
No of Design Var: 14

Youngs Modulus;
Yield Strength:
No of Elements:

30000000.0
52000.0

6

B) Derived Constants:
No of System Nodal Points... 7

No of Degrees of Freedom.... 21
Length per Element 8.3537
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY -5000.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution
Node

1

2

3

4

5

6

7

Height
00000

3.00000
3.00000
3.00000
3.00000
3.00000
3.00000

Base
.50000
.50000
.50000
.50000
.50000
.50000
.50000

Length
8.35368
8.35368
8.35368
8.35368
8.35368
8.35368
8.35368

Area
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000

E) Objective Function:
Total structure Volume: 225.549301

Normal Stress Bending Stress
1194.9 0.0

Node
1

2

3

4

5

6

7

1247.4
1308.2
1279.8
1164.2
969.3
853.4

9411.2
13334.9
11503.9
4042.8
8539.9

25386.8

Total
1194.9

10658
14643
12783
5207
9509

26240.2

F) Boundary Conditions
Node X-Displ

1 1

7 1

G) Solution Vector:

Y-Displ
1

Slope

Node
1

2

3

4

5

6

7

Y-Displ Slope
0.000000E+00 0.316688E-02
0.280572E-02 0.229335E-02
0.662210E-02 0.182085E-03
0.125100E-02 -0.212342E-02

-0.128425E-01 -0 . 185793E-01 -0

.

356644E-02
-0.176538E-02 -0 . 46111 5E-01 -0

.

314903E-02
0.0O00OOE+00 -0.613415E-01 0.000000E+00

X-Displ
0.0000O0E+00

-0.238606E-01
-0.340200E-01
-0.276224E-01
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Validation #5

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000
Arch Radius: 32.000
No of Design Var: 18

Youngs Modulus
Yield Strength
No of Elements

30000000.0
52000.0

8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom. ... 27
Length per Element 6.2731
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY -5000.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 3.00000 1.50000 6.27310 4.50000
2 3.00000 1.50000 6.27310 4.50000
3 3.00000 1.50000 6.27310 4.50000
4 3.00000 1.50000 6.27310 4.50000
5 3.00000 1.50000 6.27310 4.50000
6 3.00000 1.50000 6.27310 4.50000
7 3.00000 1.50000 6.27310 4.50000
8 3.00000 1.50000 6.27310 4.50000
9 3.00000 1.50000 6.27310 4.50000

E) Objective Function:
Total structure Volume: 225.831528

Normal Stress Bending StressNode
1

2

3

4

5

6

7

8

9

1175.4
1222.5
1292.3
1312.4
1282.1
1202.5
1076.8
909.6
816.4

7509
11997
13291
11342
6224
1865

12616
25615

Total
1175.4
8731.8

13289
14604
12624
7427
2942

13525.8
26431.5

F) Boundary Conditions
Node X-Displ

1 1

9 1

G) Solution Vector:

Y-Displ
1

Slope

Node X-Displ
1 O.OO0OO0E+0O
2 -0.190172E-01
3 -0.314948E-01
4 -0.342107E-01

Y-Displ
O.OOOOOOE+00
0.162605E-02
0.513368E-02
0.627359E-02 -0

5 -0.280319E-01 0.848441E-03 -0
6 -0.170219E-01 -0.129808E-01 -0
7 -0.654051E-02 -0

.

331005E-01 -0
6 -0.742209E-03 -0

.

529373E-01 -0

9 0.000000E+00 -0.622147E-01

Slope
321682E-02
269341E-02
133378E-02
428882E-03
.214589E-02
.337032E-02
.367416E-02
.266477E-02
.000000E+00
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Validation #5

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000
Arch Radius: 32.000
No of Design Var: 22

Youngs Modulus:
Yield Strength:
No of Elements:

30000000.0
52000.0

10

B) Derived Constants:
No of System Nodal Points... 11
No of Degrees of Freedom.... 33
Length per Element 5.0214
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY -5000.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution
Node

1

2

3

4

5

6

7

8

9

10
11

Height
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

Base
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000

Length
5.02138

02138
02138
02138
02138
02138
02138
02138
02138
02138
02138

E) Objective Function:
Total structure Volume: 225.962219

Node Normal Stress Beneiing Str
1 1163.3 0.0
2 1204.7 6225.1
3 1272.0 10546.0
4 1307.9 12856.2
5 1311.7 13098.8
6 1283.2 11268.0
7 1223.1 7408.7
8 1132.9 1616.0
9 1014.8 5967.4

10 871.6 15155.0
11 794.2 25720.4

F) Bounda ry Conditions

:

Node X--Displ Y--Displ
1 1 1

11 1

Area
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000

Slope

Total
1163.3
7429.8

11817.9
14164.1
14410.6
12551.2
8631.8
2748.9
6982.2

16026.7
26514.7
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G) Solution Vector:
Node X-Displ

1 0.000000E+00
2 -0.156551E-01
3 -0.277397E-01
4 -0.339727E-01
5 -0.337863E-01
6 -0.282253E-01
7 -0.195378E-01 -0
8 -0.105138E-01 -0
9 -0.366515E-02 -0

10 -0.355416E-03 -0
11 0.000000E+00 -0,

Y-Displ Slope

000
103
372
607
569
660
983
249
419
564
626

000E+00
676E-02
354E-02
021E-02
723E-02
388E-03
642E-02
420E-01
486E-01
151E-01
255E-01

32
28
19
65
79
21
31
37
34
22
00

4004E-02
9272E-02
5701E-02
1332E-03
6782E-03
5629E-02
9832E-02
0184E-02
5906E-02
8057E-02
O0O0E+0O
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Validation #5

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
No of Design Var: 26 No of Elements: 12

B) Derived Constants:
No of System Nodal Points... 13
No of Degrees of Freedom. ... 39
Length per Element 4.1858
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY -500 0.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 3.00000 1.50000 4.18580 4.50000
2 3.00000 1.50000 4.18580 4.50000
3 3.00000 1.50000 4.18580 4.50000
4 3.00000 1.50000 4.18580 4.50000
5 3.00000 1.50000 4.18580 4.50000
6 3.00000 1.50000 4.18580 4.50000
7 3.00000 1.50000 4.18580 4.50000
8 3.00000 1.50000 4.18580 4.50000
9 3.00000 1.50000 4.18580 4.50000

10 3.00000 1.50000 4.18580 4.50000
11 3.00000 1.50000 4.18580 4.50000
12 3.00000 1.50000 4.18580 4.50000
13 3.00000 1.50000 4.18580 4.50000

E) Objective Function:
Total structure Volume: 226.033264

Node Normal Stress Bending Stress Total
1 1155.0 0.0 1155.1
2 1191.5 5308.7 6500.2
3 1253.9 9309.8 10563.7
4 1294.8 11935.0 13229.8
5 1313.6 13139.3 14452.9
6 1309.9 12902.2 14212.1
7 1283.8 11227.5 12511.3
8 1235.7 8144.1 9379.9
9 1166.5 3704.7 4871.2

10 1077.3 2015.0 3092.3
11 969.7 8917.1 9886.8
12 845.5 16883.3 17728.8
13 779.5 25777.3 26556.9
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F) Boundary Conditions:
Node X-Displ Y-Displ

1 1 1

13 1

Slope

G) Solution Vec
Node

1

2

3

4

5

6

7

X-Dis
0.00000

-0.13252
-0.24356
-0.31755
-0.34704
-0.33289
-0.28330

8 -0.21187
9 -0.13484

10 -0.67800
11 -0.22177
12 -0.18192
13 0.00000

tor:
Pi
OE + 00
3E-01
9E-01
5E-01
3E-01
5E-01
8E-01
8E-01
4E-01
7E-02
9E-02
9E-03
0E+00

Y-Di
.0000
,7070
,2741
,5064
6314
5148
5578
7854
1968
3363
4752
5841
6284

spl
00E+00
96E-03
26E-02
15E-02
60E-02
15E-02
44E-03
92E-02
69E-01
74E-01
36E-01
05E-01
92E-01

SI
325
300
232
133
171
103
216
306
361
369
318
198
000

ope
259E-02
569E-02
580E-02
772E-02
546E-03
961E-02
186E-02
281E-02
389E-02
247E-02
404E-02
409E-02
OOOE-t-OO
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Validation #5

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000
Arch Radius: 32.000
No of Design Var: 30

Youngs Modulus:
Yield Strength:
No of Elements:

30000000.0
52000.0

14

B) Derived Constants:
No of System Nodal Points... 15
No of Degrees of Freedom. ... 45
Length per Element 3.5885
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY -5000.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node

1

2

3

4

5

6

7

8

9

10
11
12
13
14
15

Height
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

Base
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000

Length
3.58851

58851
58851
58851
58851
58851
58851
58851
58851
58851
58851
58851
58851
58851
58851

E) Objective Function:
Total structure Volume: 226.0

Normal Stress Bending SNode
1

2

3

4

5

6

7

8

9

10
11
12
13
14
15

1149.0
1181.5
1238.8
1280.5
1306
1315
1307
1284
1244
1188
1118
1033
935
826
769

4624
8296

10970
12611
13200
12728
11202
8641
5078
556

4866
11123
18133
25810

76035
tress
.0
.5
.5
.1
.5
.1
.6
.7

.9

.2

.4

.7

.1

.9

.9

Area
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000

Total
1149.0
5805.9
9535.3

12250.6
13917.5
14515.4
14036.5
12486.8
9886.1
6266.8
1674.5
5900

12058
18960
26579
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F) Boundary Conditions:
Node X-Displ Y-Displ

1 1 1

15 1

Slope

G) Solution Ve
Node

1

2

3

4

5

6

7

X-Di
0.0000

-0.1146
-0.2154
-0.2915
-0.3363
-0.3478
-0.3283

8 -0.2839
9 -0.2234

10 -0.1570
11 -0.9498
12 -0.4566
13 -0.1422
14 -0.9469
15 0.0000

ctor :

spl
00E+00
79E-01
84E-01
63E-01
53E-01
35E-01
42E-01
39E-01
30E-01
56E-01
19E-02
27E-02
29E-02
79E-04
00E+00

Y-Di
.0000
.5063
.2071
.4106
.5793
.6248
,4672
,4957
,6502
,1610
2762
3987
5121
5965
6298

spl
OOE+00
69E-03
83E-02
33E-02
62E-02
52E-02
42E-02
43E-03
87E-02
95E-01
72E-01
12E-01
10E-01
59E-01
27E-01

SI
.326
,307
,256
,179
,852
,177
121
,216
295
350
372
355
291
175
000

ope
008E-02
569E-02
050E-02
229E-02
037E-03
131E-03
096E-02
516E-02
641E-02
346E-02
813E-02
627E-02
872E-02
218E-02
000E+00
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Validation #5

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90 .000
Arch Radius: 32.000
No of Design Var: 34

Youngs Modulus:
Yield Strength:
No of Elements:

30000000.0
52000.0

16

B) Derived Constants:
No of System Nodal Points... 17
No of Degrees of Freedom. ... 51
Length per Element 3.1403
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY -5000.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node

1

2

3

4

5

6

7

8

9

10
11
12
13
14
15
16
17

Height
00000
00000
00000
00000
00000
00000
00000

3.00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

Base
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000
.50000

Length
3.14033

14033
14033
14033
14033
14033
14033
14033
14033
14033
14033
14033
14033
14033
14033
14033
14033

E) Objective Function:
Total structure Volume: 226.103821

Normal Stress Bending StressNode
1

2

3

4

5

6

7

8

9

10
11
12
13

14
15
16
17

1144,
1173,
1226,
1266,
1295
1311,
1315
1306
1284
1250
1204
1146
1077

998.3
909.5
812.0
761.1

0.0
4094.6
7465.0

10078.9
11911.1
12943.9
13167.7
12579.8
11186.0
8999.8
6042.2
2341.6
2066.5
7139.5

12828.8
19079.4
25831.4

Area
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000
4.50000

Total
1144.4
5268
8691

11345
13206
14255
14482
13885
12470
10250
7246
3487.8
3143.9

8137.7
13738.4
19891.4
26592.6
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F) Boundary Conditions:
Node X-Displ Y-Displ

1 1 1

17 1

Slope

G) Solution Ve
Node

1

2

3

4

5

6

7

X-Di
0.0000

-0.1009
-0.1924
-0.2667
-0.3184
-0.3448
-0.3460

8 -0.3243
9 -0.2843

10 -0.2319
11 -0.1740
12 -0.1175
13 -0.6863
14 -0.3192
15 -0.9531
16 -0.4720
17 0.0000

ctor :

spl
00E+00
61E-01
61E-01
26E-01
26E-01
82E-01
60E-01
79E-01
26E-01
15E-01
03E-01
21E-01
87E-02
43E-02
91E-03
50E-04
00E+00

Y-Di
0000
3760
1606
3331
5038
6138
6048
4269
4556
5525
1354
2321
3382
4440
5375
6048
6306

spl
00E+00
56E-03
06E-02
45E-02
54E-02
47E-02
40E-02
21E-02
61E-03
06E-02
97E-01
30E-01
12E-01
54E-01
69E-01
01E-01
48E-01

SI
326
312
271
210
133
471
439
133
216
287
339
368
369
337
268
156
000

ope
459E-02
172E-02
838E-02
622E-02
893E-02
678E-03
423E-03
782E-02
707E-02
140E-02
626E-02
879E-02
838E-02
717E-02
042E-02
706E-02
000E+00
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OPTIMIZATION #1

OPTIMIZATION SOLUTION

APPENDIX E
CASE STUDIES

A) Problem Parameters:
Arch Angle : 0.002
Arch Radius: 1000000.000
No of Design Var: 18

Youngs Modulus:
Yield Strength:
No of Elements:

30000000.0
52000.0

8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom.... 27
Length per Element 4.0000
Number of Iterations 1

C) Structure Loading:
FX 2000.0000
FY 0.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 4.19530 0.41953 4.00000 1.76005
2 4.01266 0.40127 4.00000 1.61015
3 3.81169 0.38117 4.00000 1.45290
4 3.58695 0.35869 4.00000 1.28662
5 3.32982 0.33298 4.00000 1.10877
6 3.02540 0.30254 4.00000 0.91530
7 2.64292 0.26429 4.00000 0.69850
8 2.09772 0.20977 4.00000 0.44004
9 0.03041 0.03000 4.00000 0.00091

E) Objective Function:

Total . structure Volume: 33.126362

Node Normal Stress Bending Stress
1 0.0 52002.4
2 0.0 52002.4
3 0.0 52002.5
4 0.0 52002.4
5 0.0 52003.1
6 0.0 52000.9
7 0.0 52001.6
8 0.0 51999.4
9 0.1 844.7

F) Bounda ry Conditions

:

Node X-•Displ Y-Displ Slope
1 1 1 1

9

Total
52002.4
52002
52002
52002
52003
52000
52001
51999

844.8
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G) Solution Vector:
Y-Displ Slope
.OOOOOOE+OO 0. 000000E + 00
.295492E-09 -0 . 3 38401E-02
119801E-08 -0.693567E-02
274074E-08 -0 . 106947E-01
496595E-08 -0 . 147211E-01
793075E-08 -0 . 191152E-01
117209E-07 -0.240748E-01
165004E-07 -0.301571E-01

9 0.618095E+00 0.268468E-07 -0 . 744676E-01

Node X-Displ
1 .000000E+00
2 .691840E-02
3 277399E-01
4 632283E-01
5 114358E+00
6 182449E+00
7 269490E+00
8 379305E+00
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OPTIMIZATION #la

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 0.002 Youngs Modulus: 30000000.0
Arch Radius: 1000000.000 Yield Strength: 52000.0
No of Design Var: 18 No of Elements: 8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom.... 27
Length per Element 4.0000
Number of Iterations 1

C) Structure Loading:
FX 2000.0000
FY 0.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 4.19499 0.41961 4.00000 1.76025
2 4.01244 0.40133 4.00000 1.61030
3 3.81144 0.38124 4.00000 1.45308
4 3.58705 0.35870 4.00000 1.28669
5 3.32942 0.33306 4.00000 1.10891
6 3.02541 0.30254 4.00000 0.91531
7 2.64171 0.26456 4.00000 0.69888
8 2.09811 0.20981 4.00000 0.44021
9 0.10080 0.03000 4.00000 0.00302

E) Objective Function:

Total structure Volume: 33.148262

Node Normal Stress Bending Stress Total
1 0.0 52001.2 52001.2
2 0.0 52001.2 52001.2
3 0.0 52000.0 52000.0
4 0.0 51998.6 51998.6
5 0.0 52003.4 52003.4
6 0.0 52000.0 52000.0
7 0.0 51997.4 51997.4
8 0.0 51970.5 51970.5
9 0.0 0.0 0.0

F) Boundary Conditions:
Node X-Displ Y-Displ Slope11 1 1

9

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 O.OOOOOOE+00 0.000000E+00 0.000000E+00
2 0.691870E-02 0.295505E-09 -0

.

338415E-02
3 0.277409E-01 0.119806E-08 -0 .693591E-02
4 0.632300E-01 0.274082E-08 -0 . 106947E-01
5 0.114360E+00 0.496604E-08 -0 . 147212E-01
6 0.182452E+00 0.793089E-08 -0 . 191155E-01
7 0.269496E+00 0.117212E-07 -0 . 240760E-01
8 0.379315E+00 0.165008E-07 -0 . 301576E-01
9 0.607042E+00 0.263666E-07 -0 . 703189E-01
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OPTIMIZATION #2

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90 .000
Arch Radius: 32.000
No of Design Var: 18

Youngs Modulus:
Yield Strength:
No of Elements:

30000000.0
52000.0

8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom. ... 27
Length per Element 6.2731
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY -2000.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 1.95274 1.95611 6.27310 3.81977
2 1.94555 1.93241 6.27310 3.75960
3 1.89934 1.90956 6.27310 3.62691
4 1.92039 1.92025 6.27310 3.68763
5 1.92103 1.91927 6.27310 3.68698
6 1.91825 1.92011 6.27310 3.68326
7 1.91849 1.92476 6.27310 3.69264
8 1.92622 1.91786 6.27310 3.69422
9 1.96640 1.96000 6.27310 3.85413

E) Objective Function:

Total structure Volume: 186.151276

Node
1

2

3

4

5

6

7

8

9

Normal Stress Bending Stress Total
521
519.3
507.0
448.8
381.7
300
205
104
50

51491
51498.4
51507.8
45091.9
38340.4
30197.7
20743.2
10527.8

0.3

F) Boundary Conditions
Node X-Displ

1 1

9

G) Solution Vector:

Y-Displ
1

Slope

52012.2
52017.7
52014.8
45540.7
38722.1
30497.7
20949.1
10632.7

51.2

1

Node X-Displ Y-Displ Slope
1 0.000000E+00 0.000000E+00 . 0OOOO0E+00
2 0.345895E-01 -0

.

351714E-02 -0 . 110489E-01
3 0.134858E+00 -0 . 340464E-01 -0 .222560E-01
4 0.287683E+00 -0

.

115848E+00 -0

.

328233E-01
5 0.469409E+00 -0 . 265100E+00 -0 . 419063E-01
6 0.651576E+00 -0

.

487184E+00 -0 . 493731E-01
7 0.806243E+00 -0 . 776659E+00 -0

.

549243E-01
8 0.909657E+00 -0

.

111768E+01 -0

.

583234E-01
9 0.945957E+00 -0

.

148635E+01 -0

.

594191E-01
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OPTIMIZATION #2a

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000
Arch Radius: 32.000
No of Design Var: 18

Youngs Modulus:
Yield Strength:
No of Elements:

30000000.0
52000.0

8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom.... 27
Length per Element 6.2731
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY -2000.000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 3.91339 0.49197 6.27310 1.92527
2 4.10780 0.43837 6.27310 1.80073
3 4.11506 0.41151 6.27310 1.69337
4 3.97207 0.39721 6.27310 1.57773
5 3.69253 0.39033 6.27310 1.44130
6 2.42308 0.70760 6.27310 1.71458
7 2.31581 0.53330 6.27310 1.23503
8 1.30739 0.84851 6.27310 1.10933
9 0.80670 1.49956 6.27310 1.20969

E) Objective Function:

Total structure Volume: 77.775108

Bending StressNode Normal Stress
1 1033.8 50968.7
2 1084.1 50916.9
3 1085.9 50913.5
4 1048.9 50949.6
5 976.5 51020.7
6 645.0 51350.6
7 616.7 51379.1
8 350.0 51653.2
9 162.0 0.2

F) Boundary Conditions:
Node X-Displ Y-Displ Slope11 1 1

9

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 O.OOOOOOE+00 0.000000E+00 0.O000O0E+0O
2 0.165765E-01 -0 . 185682E-02 -0

.

530039E-02
3 0.640268E-01 -0 . 164901E-01 -0 . 104791E-01
4 0.136735E+00 -0 . 556094E-01 -0 . 157515E-01
5 0.226861E+00 -0

.

129851E+00 -0

.

213260E-01
6 0.324976E+00 -0

.

249654E+00 -0 . 277857E-01
7 0.421348E+00 -0

.

430238E+00 -0

.

369135E-01
8 0.499870E+00 -0 . 689424E+00 -0 . 482073E-01
9 0.534109E+00 -0

.

103740E+01 -0

.

595043E-01

Total
52002.6
52000,
51999
51998
51997
51995
51995
52003

162,
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OPTIMIZATION #3

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
No of Design Var: 18 No of Elements: 8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom. ... 27
Length per Element 6.2731
Number of Iterations 1

C) Structure Loading:
FX 2000.0000
FY 0.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 3.66465 0.55100 6.27310 2.01923
2 3.83344 0.40649 6.27310 1.55825
3 3.34200 0.41258 6.27310 1.37883
4 2.46546 0.54860 6.27310 1.35256
5 1.99742 0.55572 6.27310 1.11001
6 1.48940 0.58247 6.27310 0.86752
7 1.21374 0.66160 6.27310 0.80301
8 0.58386 0.48072 6.27310 0.28068
9 0.77051 1.86386 6.27310 1.43612

E) Objective Function:

Total structure Volume: 56.657707

Node Normal Stress Bending Stress Total
1 97.1 51895.5 51992.6
2 249.2 51745.2 51994.4
3 552.4 51445.1 51997.4
4 817.5 51180.4 51997.9
5 1267.9 50730.6 51998.5
6 1907.7 50087.6 51995.3
7 2290.0 29991.8 32281.8
8 6955.2 45025.1 51980.3
9 1386.0 0.0 1386.0

F) Boundary Conditions:
Node X-Displ Y-Displ Slope11 1 1

9

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 0.OOOO0OE+00 O.0OO0O0E+OO 0.000000E+00
2 0.185814E-01 -0 . 180717E-02 -0 . 574511E-02
3 0.720148E-01 -0.179297E-01 -0 . 117837E-01
4 0.158405E+00 -0 . 639459E-01 -0 . 190296E-01
5 0.275821E+00 -0 . 160028E+00 -0 . 286801E-01
6 0.416853E+00 -0 . 331 363E+00 -0 . 409667E-01
7 0.559677E+00 -0 . 597638E+00 -0 . 537583E-01
8 0.678467E+00 -0 . 986551E+00 -0 . 722173E-01
9 0.725130E+00 -0 . 145498E+01 -0 . 764554E-01
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OPTIMIZATION #3a

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
No of Design Var: 18 No of Elements: 8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom. ... 27
Length per Element 6.2731
Number of Iterations 2

C) Structure Loading:
FX 20 0.0000
FY 0.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 4.19827 0.41983 6.27310 1.76255
2 3.90887 0.39089 6.27310 1.52793
3 3.58581 0.35858 6.27310 1.28581
4 3.22371 0.32237 6.27310 1.03923
5 2.81849 0.28185 6.27310 0.79439
6 2.36310 0.23631 6.27310 0.55843
7 1.84434 0.18443 6.27310 0.34016
8 0.99509 0.18101 6.27310 0.18012
9 0.60305 0.06348 6.27310 0.03828

E) Objective Function:

Total structure Volume: 41.341122

Node Normal Stress Bending Stress Total
1 111.2 51891.6 52002.9
2 254.1 51749.1 52003.2
3 592.4 51411.0 52003.3
4 1064.0 50938.9 52002.9
5 1771.6 50231.5 52003.1
6 2963.6 49040.2 52003.8
7 5406.0 46591.3 51997.2
8 10838.0 41165.8 52003.8
9 51995.7 0.0 51995.7

F) Boundary Conditions:
Node X-Displ Y-Displ Slope11 1 1

9

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 O.0OOOO0E+00 0.000000E+00 0.000000E+00
2 0.173605E-01 -0 . 168480E-02 -0 . 536752E-02
3 0.677523E-01 -0 . 168806E-01 -0 . 111584E-01
4 0.148066E+00 -0 . 596161E-01 -0 . 175022E-01
5 0.251532E+00 -0

.

144153E+00 -0 . 246090E-01
6 0.367672E+00 -0

.

284910E+00 -0 . 328323E-01
7 0.482192E+00 -0

.

497395E+00 -0 . 428618E-01
8 0.577701E+00 -0 . 806931E+00 -0 . 575020E-01
9 0.627437E+00 -0

.

126845E+01 -0 . 822389E-01
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OPTIMIZATION #4

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000
Arch Radius: 32.000
No of Design Var: 18

Youngs Modulus
Yield Strength
No of Elements

30000000.0
52000.0

8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom. ... 27
Length per Element 6.2731
Number of Iterations 2

C) Structure Loading:
FX 0.0000
FY -2 000.0000
FM 1000.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node

1

2

3

4

5

6

7

8

9

Height
4.20406
4.17639
4.09209
3.94749
3.73436
,43725
02033
95373
79249

Base
0.42041
0.41764
0.40921
0.39475
0.37344
0.34373
0.30203
0.35108
0.21196

Length
6.27310

27310
27310
27310
27310
27310
27310
27310
27310

Area
76741
74422
67452
55827
39455
18147
91224
68592
16798

E) Objective Function:

Total structure Volume: 63 .252686

Node Normal Stress Bending Stress Total
1 1126. 2 50868.9 51995 1

2 1119. 2 50874.8 51994 1

3 1098. 2 50896.4 51994 6

4 1062. 50929.1 51991 1

5 1009. 3 50986.3 51995 6

6 936. 51055.6 51991 6

7 835. 51156.8 51991 8

8 566. 1 51424.8 51990 9

9 1166. 5 45071.7 46238 2

') Boundary Conditions:
Node X-Displ Y-Displ Slope

1 1 1 1

9

r) Solution Vector:
Node X-Displ Y-Displ Slope

1 O.OOOOO0E+00 0. 0O000OE+00 O.OOOOOOE+00
2 0.158777E-01 -0. 180201E-02 -0.507744E-02
3 0.619007E-01 -0 .160076E-01 -0.102264E-01
4 0.133298E+00 -0 .544288E-01 -0.155283E--01
5 0.222312E+00 -0 .127764E+00 -0.210892E-01
6 0.318467E+00 -0 .245256E+00 -0.270698E--01
7 0.408886E+00 -0 414819E+00 -0.337708E--01
8 0.479103E+00 -0 .646809E+00 -0.425065E--01
9 0.512886E+00 -0 .990889E+00 -0.605568E-01
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OPTIMIZATION #4a

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000
Arch Radius: 32.000
No of Design Var: 18

Youngs Modulus:
Yield Strength:
No of Elements:

30000000.0
52000.0

8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom.... 27
Length per Element 6.2731
Number of Iterations 2

C) Structure Loading:
FX 0.0000
FY -2000.0000
FM 10000.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node

1

2

3

4

5

6

7

8

9

Height
3.99646

96579
87202
70940
46539
11238
57625
43829
25936

Base
39965
39658
38720
37094
34654
31124
25763
14383
22769

Length
27310
27310
27310
27310
27310
27310
27310
27310
27310

Area
59717
57275
49925
37596
20089
96869
66371
20687
51444

E) Objective Function:

Total structure Volume 53.206200

Node Normal Stress
1 1246.2
2 1241.2
3 1226.5
4 1202.8
5 1172.0
6 1141.6
7 1147.6
8 1877.1
9 381.0

Bending Stress
50757.2
50761.6
50776.2
50799.4
50828.7
50859.8
50851.9
50127.0
51622.1

Total
52003.4
52002.8
52002.8
52002
52000
52001
51999
52004
52003

F) Boundary Conditions
Node X-Displ

1 1

9

G) Solution Vector:

Y-Displ
1

Slope

Node X-Displ Y-Displ Slope
1 O.0OOO0OE+O0 0.0OOOOOE+0O . OOOOOOE-t-OO
2 0.166829E-01 -0 . 190698E-02 -0

.

533238E-02
3 0.650796E-01 -0 . 168603E-01 -0 .107525E-01
4 0.140297E+00 -0 . 573560E-01 -0

.

163633E-01
5 0.234385E+00 -0 . 134897E+00 -0 . 223074E-01
6 0.336635E+00 -0 .259876E+00 -0 . 288281E-01
7 0.434064E+00 -0 . 442670E+00 -0 . 365050E-01
8 0.515013E+00 -0.710561E+00 -0 . 496258E-01
9 0.544307E+00 -0

.

100920E+01 -0

.

415951E-01
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OPTIMIZATION #5

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90 . 000
Arch Radius: 32.000
No of Design Var: 18

B) Derived Constants:
No of System Nodal Points
No of Degrees of Freedom.
Length per Element
Number of Iterations

C) Structure Loading:
rx
FY
FM
FA

Youngs Modulus
Yield Strength:
No of Elements

30000000.0
52000.0

8

9

27
6.2731

0.0000
0.0000
0.0000

•100.0000

D) Elemental Dimensions and Stress Distribution:
Node

1

2

3

4

5

6

7

8

9

Height
4.94233

59883
20711
76835
27617

2.72309
2.08293
1.31418
0.14293

Base
.49484
.46036
.42104
.37698
.32787
.27231
.20953
.13235
.03000

Length
6.27310

27310
27310
27310
27310
27310
27310
27310
27310

Area
44566
11711
77135
42060
07416
74152
43644
17394
00429

E) Objective Function:

Total structure Vol ume

:

55.704273

Node Normal Stress Bending Stress Total
1 1173.9 50828.3 52002.2
2 1210.8 50791.8 52002.6
3 1109.9 50893.1 52002.9
4 996.4 51006.4 52002.7
5 868.5 51135.7 52004.2
6 724.0 51279.7 52003.7
7 555.5 51446.8 52002.3
8 351.8 51646.5 51998.3
9 1.8 4.8 6.6

F) Boundary Conditions:
Node X-Displ Y-Displ Slope11 1 1

9

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 O.OOOOOOE+00 0.0OOOO0E+OO . 000000E+00
2 0.144353E-01 -0 . 168651E-02 -0 . 447172E-02
3 0.564283E-01 -0 . 146790E-01 -0 .932896E-02
4 0.123657E+00 -0 . 508635E-01 -0 . 147199E-01
5 0.210848E+00 -0 . 122671E+00 -0 . 208707E-01
6 0.309650E+00 -0

.

243321E+00 -0 . 281898E-01
7 0.408546E+00 -0

.

428622E+00 -0 . 375918E-01
8 0.492877E+00 -0 . 706927E+00 -0

.

522128E-01
9 0.557215E+00 -0

.

136017E+01 -0

.

130850E+00
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OPTIMIZATION #6

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
No of Design Var: 18 No of Elements: 8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom.... 27
Length per Element 6.2731
Number of Iterations 1

C) Structure Loading:
rx o.oooo
FY -2000.0000
FM 0.0000
FA -100.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 5.82316 0.58232 6.27310 3.39091
2 5.56534 0.55653 6.27310 3.09731
3 5.25381 0.52538 6.27310 2.76025
4 4.88828 0.48883 6.27310 2.38953
5 4.46201 0.44620 6.27310 1.99096
6 3.96199 0.39620 6.27310 1.56974
7 3.35911 0.33591 6.27310 1.12836
8 2.27093 0.32719 6.27310 0.74303
9 0.40176 0.51850 6.27310 0.20831

51995,,1
51995,,2
51995,.5
51995,,8
51996,.9
51997,,8
51999,.1
51998,,6

941,,2

E) Objective Function:

Total structure Volume: 97.474487

Node Normal Stress Bending Stress Total
1 1433.6 50561.4
2 1457.9 50537.3
3 1378.4 50617.0
4 1284.9 50710.9
5 1175.4 50821.4
6 1046.4 50951.4
7 889.9 51109.2
8 605.0 51393.6
9 940.6 0.6

F) Boundary Conditions:
Node X-Displ Y-Displ Slope11 1 1

9

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 0.000000E+00 0.000000E+00 0.000000E+00
2 0.118390E-01 -0.148107E-02 -0

.

371830E-02
3 0.461727E-01 -0 . 122074E-01 -0 . 763781E-02
4 0.100311E+00 -0.414621E-01 -0 . 118319E-01
5 0.169098E+00 -0 . 982482E-01 -0 . 164007E-01
6 0.244936E+00 -0 . 191026E+00 -0 . 215055E-01
7 0.317850E+00 -0 . 327870E+00 -0 . 274519E-01
8 0.375826E+00 -0

.

519533E+00 -0 . 353806E-01
9 0.404874E+00 -0

.

815207E+00 -0

.

533505E-01
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OPTIMIZATION #6a

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
No of Design Var: 18 No of Elements: 8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom.... 27
Length per Element 6.2731
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY -2000.0000
FM 0.0000
FA -100.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 5.82323 0.58232 6.27310 3.39101
2 5.56545 0.55654 6.27310 3.09742
3 5.25394 0.52539 6.27310 2.76039
4 4.88843 0.48884 6.27310 2.38968
5 4.46221 0.44622 6.27310 1.99114
6 3.96197 0.39623 6.27310 1.56986
7 2.96078 0.43150 6.27310 1.27759
8 2.01471 0.41514 6.27310 0.83639
9 0.53831 1.20792 6.27310 0.65023

1 1433.6
2 1457.8
3 1378.3
4 1284.9
5 1175.3
6 1046.3
7 786.1
8 537.6
9 301.4

E) Objective Function:

Total structure Volume: 101.764938

Node Normal Stress Bending Stress Total
50556.2 51989.7
50531.4 51989.2
50609.9 51988.2
50703.3 51988.1
50812.4 51987.8
50946.8 51993.1
51211.2 51997.3
51463.1 52000.6

0.5 302.0

F) Boundary Conditions:
Node X-Displ Y-Displ Slope11 1 1

9

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 O.OOOOOOE-t-OO 0.000000E+00 0.00OO0OE+00
2 0.118375E-01 -0.148090E-02 -0 . 371783E-02
3 0.461666E-01 -0 . 122058E-01 -0 .763674E-02
4 0.100297E+00 -0 . 414562E-01 -0 . 118301E-01
5 0.169072E+00 -0 . 982332E-01 -0 . 163980E-01
6 0.244899E+00 -0 . 190995E+00 -0 . 215019E-01
7 0.318251E+00 -0 . 328633E+00 -0 . 277224E-01
8 0.377833E+00 -0 . 525529E+00 -0 . 367195E-01
9 0.404775E+00 -0 . 799478E+00 -0 . 474619E-01
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OPTIMIZATION #7

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
No of Design Var: 18 No of Elements: 8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom. ... 27
Length per Element 6.2731
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY -8000.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 0.49766 0.32385 6.27310 0.16117
2 2.49460 0.47039 6.27310 1.17344
3 3.05960 0.46175 6.27310 1.41278
4 2.96505 0.48983 6.27310 1.45238
5 2.41709 0.49892 6.27310 1.20593
6 0.96211 0.15996 6.27310 0.15390
7 3.08578 0.43109 6.27310 1.33023
8 4.00244 0.54499 6.27310 2.18129
9 4.21890 0.79543 6.27310 3.35583

E) Objective Function:

Total structure Volume: 64.558678

Node Normal Stress Bending Stress Total
1 51998.6 0.2 51998.8
2 7361.8 44637.4 51999.2
3 6359.0 45640.2 51999.3
4 6185.7 45813.3 51999.0
5 7163.7 44836.1 51999.7
6 51734.2 267.2 52001.4
7 5246.1 46199.3 51445.4
8 2625.6 49374.5 52000.1
9 1501.8 50497.5 51999.4

F) Boundary Conditions:
Node X-Displ Y-Displ Slope11 1

9 1 1

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 O.OOOOOOE+OO 0.O00O00E+00 0.307764E-01
2 -0.149671E+00 0.117776E-01 0.102322E-01
3 -0.192288E+00 0.232035E-01 0.336248E-02
4 -0.193966E+00 0.225997E-01 -0

.

298150E-02
5 -0.161968E+00 -0.546921E-02 -0 . 100998E-01
6 -0.785744E-01 -0

.

112048E+00 -0 . 273030E-01
7 -0.161085E-01 -0.234507E+00 -0 . 111216E-01
8 -0.133252E-02 -0 . 285889E+00 -0

.

514754E-02
9 0.000000E+00 -0.303321E+00 0.000000E+00
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OPTIMIZATION #7a

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
No of Design Var: 18 No of Elements: 8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom. ... 27
Length per Element 6.2731
Number of Iterations 2

C) Structure Loading:
FX 0.0000
FY -8000.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 0.67370 0.23920 6.27310 0.16115
2 2.61798 0.42995 6.27310 1.12561
3 3.27094 0.40726 6.27310 1.33212
4 3.15268 0.43628 6.27310 1.37546
5 2.37931 0.51326 6.27310 1.22121
6 0.77194 0.19791 6.27310 0.15277
7 3.03132 0.44320 6.27310 1.34348
8 4.32486 0.46885 6.27310 2.02772
9 4.62704 0.66330 6.27310 3.06910

E) Objective Function:

Total structure Volume: 61.674786

Node Normal Stress Bending Stress Total
1 52005.8 0.1 52005.8
2 7674.6 44327.7 52002.3
3 6743.9 45258.6 52002.5
4 6531.3 45470.1 52001.4
5 7073.5 44927.7 52001.1
6 52110.1 1128.4 53238.5
7 5193.7 46613.6 51807.3
8 2824.0 49177.3 52001.2
9 1641.8 50360.2 52002.1

F) Boundary Conditions:
Node X-Displ Y-Displ Slope11 1

9 1 1

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 O.0OOOO0E+O0 0.000000E+00 0.285876E-01
2 -0.140675E+00 0.106575E-01 0.102757E-01
3 -0.184847E+00 0.224797E-01 0.386082E-02
4 -0.190542E+00 0.239361E-01 -0 . 204050E-02
5 -0.163888E+00 0.229189E-03 -0 .886111E-02
6 -0.790007E-01 -0.108136E+00 -0 . 284664E-01
7 -0.148789E-01 -0 . 233588E+00 -0 . 104461E-01
8 -0.115786E-02 -0 . 281574E+00 -0 . 472253E-02
9 0.000000E+00 -0.297573E+00 0.000000E+00
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OPTIMIZATION #8

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000
Arch Radius: 32.000
No of Design Var: 18

Youngs Modulus:
Yield Strength:
No of Elements:

3000000C.0
52000.0

8

B) Derived Constants:
No of System Nodal Points... 9
No of Degrees of Freedom. ... 27
Length per Element 6.2731
Number of Iterations 2

C) Structure Loading:
FX 0.0000
FY -8000.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 3.96647 0.39665 6.27310 1.57329
2 2.66054 0.26605 6.27310 0.70784
3 2.69799 0.26980 6.27310 0.72791
4 3.29169 0.32917 6.27310 1.08352
5 3.29281 0.32928 6.27310 1.08426
6 2.70298 0.27030 6.27310 0.73061
7 2.65240 0.26524 6.27310 0.70352
8 3.95112 0.39511 6.27310 1.56114
9 4.87425 0.48694 6.27310 2.37347

E) Objective Function:

Total structure Volume: 52.992058

Node Normal Stress
1 5469.7
2 12833.6
3 13542.6
4 9462.4
5 9456.6
6 13496.0
7 12918.1
8 5103.2
9 3085.5

Bending Stress
46526.9
39153.1
38456.9
42532.7
42533.2
38480.4
39108.3
46906.0
48816.0

F) Boundary Conditions
Node X-Displ

1 1

9 1

G) Solution Vector:

Y-Displ
1

Slope

Node
1

2

3

4

5

6

7

X-Displ
0.000000E+00

-0.237838E-01
-0.683462E-01
-0.894876E-01
-0.792890E-01

0.000000E+00
0.695637E-03
0.113025E-01
0.199189E-01
0.896548E-02 -0

8 -0.821552E-03 -0

.

152604E+00 -0
9 0.000000E+00 -0.168974E+00

-0.479138E-01 -0 . 329894E-01
-0.147824E-01 -0 . 100892E+00

Slo
0000
6315
,6242
,3365
,5066
,1096
,1108
.4712
,0000

pe
00E+00
54E-02
88E-02
19E-03
34E-02
48E-01
74E-01
84E-02
00E+00

Total
51996.6
51986
51999
51995
51989
51976
52026
52009
51901
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OPTIMIZATION #8a

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 90.000
Arch Radius: 32.000
Arch Height: 2.000

Youngs Modulus
Yield Strength:
No of Elements:

30000000.0
52000.0

12

B) Derived Constants:
No of System Nodal Points... 13
No of Degrees of Freedom.... 39
Length per Element 4.1858
Number of Iterations 1

C) Structure Loading:
FX 0.0000
FY -8000.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution
Element

1

2

3

4

5

6

7

8

9

10
11
12

Height
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

E) Objective Function:
Total structure Volume

Base Length Volume
1.72707 <1.18580 14.45838
0.94577 t1.18580 7.91762
0.27194 4J. 18580 2.27661
0.65040 *J. 18580 5.44488
1.09075 41.18580 9.13130
0.78986 41.18580 6.61236
1.06223 4J. 18580 8.89255
0.75388 <1.18580 6.31116
0.25849 <1.18580 2.16400
0.93275 '1.18580 7.80861
1.75263 -1.18580 14.67236
2.65143 4J. 18580 22.19675

107.886574
Node Stress

1 51991.36
2 49986.21
3 46231.32
4 51991.33
5 49404.85
6 51991.04
7 51841.79
8 42080.21
9 51997.34

10 51279.07
11 52434.15
12 51908.94
13 51935.26

F) Boundary Conditions:
Node X-Displ Y-Displ11 1

13 1

Slope
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G) Solution Vector:
Node X-Displ

1 0.000000E+00
2 -0.121854E-01
3 -0.442765E-01
4 -0.861533E-01
5 -0.112986E+00
6 -0.121058E+00
7 -0.110454E+00
8 -0.850803E-01
9 -0.537900E-01

10 -0.252856E-01
11 -0.744947E-02
12 -0.654979E-03
13 0.000000E+00

Y-Di
0000
4574
6150
1770
2971
3429
2375

0.6223
0.5474

1184
1731
2090
2220

spl
00E+00
52E-03
66E-02
60E-01
32E-01
79E-01
26E-01
61E-02
04E-01
85E+00
90E+00
63E+00
69E+00

SI
000
527
947
907
435
109
701
115
155
,155
110
580
000

ope
000E+00
930E-02
556E-02
372E-02
047E-02
393E-03
848E-02
516E-01
000E-01
501E-01
976E-01
765E-02
000E+0O
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OPTIMIZATION #9

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 180.000
Arch Radius: 32.000
No of Design Var: 18

Youngs Modulus:
Yield Strength:
No of Elements:

30000000.0
52000.0

8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom.... 27
Length per Element 12.4858
Number of Iterations 2

C) Structure Loading:
FX 16000.0000
FY 0.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 3.87125 2.61830 12.48578 10.13610
2 2.99788 1.94284 12.48578 5.82439
3 0.78829 0.32181 12.48578 0.25368
4 2.77540 1.34286 12.48578 3.72696
5 2.82891 1.32326 12.48578 3.74337
6 2.47737 1.02727 12.48578 2.54492
7 1.60172 1.17975 12.48578 1.88963
8 0.98586 0.84212 12.48578 0.83021
9 1.27732 1.14827 12.48578 1.46670

E) Objective Function:

Total structure Volume: 287.147583

Node Normal Stress Bending Stress Total
1 573.5 51426.4 51999.9
2 1458.0 50542.0 52000.0
3 51241.7 770.7 52012.4
4 4166.3 47833.6 52000.0
5 2239.2 49761.4 52000.5
6 404.8 51595.6 52000.5
7 1007.1 50991.3 51998.4
8 2995.1 49002.5 51997.6
9 1835.2 0.1 1835.2

F) Boundary Conditions:
Node X-Displ Y-Displ11 1

9 1

G) Solution Vector:

Slope

Node X-Displ Y-Displ Slope
1 0.000000E+00 0.0OOOO0E+OO 0.000000E+00
2 0.904933E-01 -0 . 176853E-01 -0

.

130647E-01
3 0.558262E+00 -0

.

327630E+00 -0 .608843E-01
4 0.883004E+00 -0 . 806151E+00 -0 . 171659E-01
5 0.909118E+00 -0 . 928170E+00 -0 . 266783E-02
6 0.923784E+00 -0 . 854074E+00 0.134924E-01
7 0.109988E+01 -0 . 590018E+00 0.348143E-01
8 0.169034E+01 -0

.

194612E+00 0.717773E-01
9 0.266363E+01 0.0OO0OOE+0O 0.833529E-01
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OPTIMIZATION #9a

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 180.000
Arch Radius: 32.000
No of Design Var: 18

Youngs Modulus:
Yield Strength:
No of Elements:

30000000.0
52000.0

8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom. ... 27
Length per Element 12.4858
Number of Iterations 2

C) Structure Loading:
FX 16000.000
FY 0.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution
Node Height Base Length Area

1 1.07555 0.19099 12.48578 0.20542
2 5.49600 0.69864 12.48578 3.83971
3 5.93999 0.96376 12.48578 5.72472
4 5.98177 1.04035 12.48578 6.22316
5 6.00000 0.54928 12.48578 3.29571
6 5.57273 0.58244 12.48578 3.24580
7 4.24805 0.49093 12.48578 2.08549
8 2.17557 0.52420 12.48578 1.14044
9 0.24362 0.66203 12.48578 0.16128

E) Objective Function:

Total structure Volume: 344.338989

Node Normal Stress
1 53383.0
2 3451.4
3 2907.2
4 2812.1
5 2854.3
6 925.1
7 2660.2
8 6355.6
9 48642.3

Bending Stress
1.3

50161.1
50644.1
50764.5
77667.4
52414.6
50774.2
47117.6

0.0

Total
53384.3
53612
53551
53576
80521
53339
53434
53473
48642

F) Boundary Conditions
Node X-Displ

1 1

9

G) Solution Vector:

Y-Displ
1

1

Slope

Node X-Displ Y-Displ
1 0.0O0O00E+O0 0.000000E+00
2 0.538764E+00 -0

.

103983E+00
3 0.766928E+00 -0

.

254801E+00
4 0.867834E+00 -0

.

403592E+00
5 0.885116E+00 -0 . 482743E+00
6 0.891319E+00 -0

.

450538E+00
7 0.974611E+00 -0

.

324620E+00
8 0.122814E+01 -0

.

153178E+00
9 0.197489E+01 0.000000E+00

Slo
5325
2533
1788
1080
2460
6969
1612
3015
7650

pe
24E-01
26E-01
51E-01
23E-01
03E-02
65E-02
55E-01
13E-01
27E-01
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OPTIMIZATION #10

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 180.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
No of Design Var: 18 No of Elements: 8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom. ... 27
Length per Element 12.4858
Number of Iterations 2

C) Structure Loading:
FX 16 000.00 00
FY 0.0000
FM 0.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 3.87807 2.57526 12.48578 9.98702
2 3.14748 1.72693 12.48578 5.43547
3 0.88930 0.29131 12.48578 0.25906
4 2.92467 1.14515 12.48578 3.34919
5 2.96833 1.05559 12.48578 3.13335
6 2.03171 1.03518 12.48578 2.10318
7 0.77820 0.60572 12.48578 0.47137
8 1.64419 0.87326 12.48578 1.43580
9 1.68701 1.15400 12.48578 1.94680

E) Objective Function:

Total structure Volume: 256.608276

Node Normal Stress Bending Stress Total
1 631.7 51368.8 52000.5
2 1646.5 50354.2 52000.7
3 51530.6 479.7 52010.3
4 4692.9 47307.6 52000.5
5 2706.4 49294.1 52000.5
6 579.8 51421.7 52001.5
7 4780.6 47222.8 52003.4
8 2050.8 49951.2 52002.0
9 1637.1 50364.7 52001.8

F) Boundary Conditions:
Node X-Displ Y-Displ Slope11 1 1

9 1 1

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 O.0O0O0OE+0O 0.000000E+00 O.OOOOOOE+00
2 0.882631E-01 -0 . 172024E-01 -0

.

127257E-01
3 0.520760E+00 -0

.

303339E+00 -0 . 559400E-01
4 0.823131E+00 -0 . 747606E+00 -0 . 172292E-01
5 0.850524E+00 -0 . 874578E+00 -0 . 359896E-02
6 0.865174E+00 -0 .800410E+00 0.136811E-01
7 0.115273E+01 -0 . 368882E+00 0.570417E-01
8 0.165293E+01 -0

.

331472E-01 0.251769E-01
9 0.181555E+01 . 000000E+00 0.000000E+00
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OPTIMIZATION #11

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 180.000
Arch Radius: 32.000
No of Design Var: 18

Youngs Modulus:
Yield Strength:
No of Elements:

30000000.0
52000.0

8

B) Derived Constants:
No of System Nodal Points... 9
No of Degrees of Freedom. ... 27
Length per Element 12.4858
Number of Iterations 2

C) Structure Loading:
FX 0.0000
FY -12000.000
FM 1000.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 1.15824 1.02865 12.48578 1.19142
2 2.00490 1.12219 12.48578 2.24937
3 2.04000 1.08818 12.48578 2.21989
4 0.57320 0.21096 12.48578 0.12092
5 2.42160 1.36445 12.48578 3.30415
6 1.23847 0.70722 12.48578 0.87587
7 1.54335 1.08778 12.48578 1.67882
8 1.43388 0.95977 12.48578 1.37619
9 1.49848 1.26079 12.48578 1.88926

E) Objective Function:

Total structure Volume: 153.076752

Node Normal Stress
1 5944.7
2 3277.7
3 3321.9
4 51700.0
5 1618.5
6 6817.0
7 4083.4
8 4865.8
9 3360.4

Bending Stress
0.0

48720.7
48527.9

253.5
50381.3
45180.4
47917.5
47133.8
48642.0

Total
5944.7

51998.4
51849.8
51953.4
51999.8
51997.4
52000.9
51999.6
52002.3

F) Boundary Conditions:
Node X-Displ Y-Displ11 1

9 1 1

Slope

G) Solution Vector:
Node

1

2

3

4

5

6

7

8

9

X-Displ
0.000000E+00

-0.471806E+00
-0.619634E+00

Y-Displ
OOOOOOE+00
920810E-01
189140E+00

-0.359468E+00 -0 . 206478E+00
-0.269622E+00 -0 . 667966E+00
-0.213488E+00 -0 . 379826E+00
0.128494E-01 -0 . 370866E-01
0.888700E-01 0.160224E-01
0.000000E+00 0.000000E+00

Slo
4566
2416
4158
5895
,4952
3439
,2144
,5316
,0000

pe
64E-01
75E-01
93E-02
99E-01
88E-02
67E-01
67E-01
02E-02
00E+00
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OPTIMIZATION #lla

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 180.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
No of Design Var: 18 No of Elements: 8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom. ... 27
Length per Element 12.4858
Number of Iterations 2

C) Structure Loading:
FX 0.0000
FY -2 4000.0000
FM 1000.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 1.25459 1.11170 12.48578 1.39472
2 2.56424 1.39293 12.48578 3.57180
3 2.61780 1.33869 12.48578 3.50443
4 0.76364 0.31775 12.48578 0.24265
5 3.03972 1.74821 12.48578 5.31405
6 1.59975 0.69444 12.48578 1.43088
7 1.98431 1.34883 12.48578 2.67651
8 1.85250 1.19860 12.48578 2.22040
9 1.96692 1.46917 12.48578 2.88973

E) Objective Function:

Total structure Volume: 241.778809

Node Normal Stress Bending Stress Total
1 10133.6 0.0 10133.7
2 4120.0 47880.2 52000.2
3 4199.2 47797.9 51997.1
4 51413.5 611.5 52025.0
5 2009.1 49990.9 52000.0
6 8340.7 43657.1 51997.9
7 5124.9 46875.8 52000.8
8 6039.8 45960.0 51999.8
9 4402.2 47599.3 52001.5

F) Boundary Conditions:
Node X-Displ Y-Displ Slope11 1

9 1 1 1

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 O.OOOOO0E+00 0.000000E+00 0.377959E-01
2 -0.377866E+00 0.726540E-01 0.168604E-01
3 -0.474151E+00 0.134826E+00 0.149644E-02
4 -0.277207E+00 -0

.

167482E+00 -0 . 440847E-01
5 -0.210637E+00 -0

.

513900E+00 0.340668E-02
6 -0.168729E+00 -0 . 295879E+00 0.262287E-01
7 0.359865E-02 -0

.

330045E-01 0.166200E-01
8 0.647848E-01 0.107673E-01 -0

.

365121E-02
9 0.000000E+00 O.OOOOOOEt-OO . OOOOOOE-t-00
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OPTIMIZATION #12

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 180.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
No of Design Var: 18 No of Elements: 8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom. ... 27
Length per Element 12.4858
Number of Iterations 2

C) Structure Loading:
FX -9000.0000
FY -17000.0000
FM 1000.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 2.07490 1.64551 12.48578 3.41427
2 0.81408 0.49069 12.48578 0.39946
3 2.06842 0.85360 12.48578 1.76560
4 2.08744 0.85702 12.48578 1.78898
5 1.11662 0.11166 12.48578 0.12468
6 2.82593 0.84646 12.48578 2.39204
7 3.62188 1.18265 12.48578 4.28341
8 0.81741 0.25531 12.48578 0.20869
9 2.18518 1.96045 12.48578 4.28395

E) Objective Function:

Total structure Volume: 156.554611

Node Normal Stress Bending Stress Total
1 1331.2 50668.2 51999.4
2 13159.1 38839.6 51998.8
3 3525.9 48473.0 51998.9
4 3491.6 48507.9 51999.4
5 42640.2 6458.5 49098.6
6 1495.5 50503.6 51999.1
7 1368.2 50631.9 52000.2
8 51935.8 45.6 51981.4
9 2914.9 49085.0 52000.0

F) Boundary Conditions:
Node X-Displ Y-Displ Slope11 1 1

9 1 1 1

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 0.000000E+00 O.OOOOOOE+00 0.000000E+00
2 -0.385756E+00 0.754815E-01 0.480384E-01
3 -0.777271E+00 0.334000E+00 0.140370E-01
4 -0.808788E+00 0.378437E+00 -0

.

538832E-02
5 -0.737499E+00 0.351551E-02 -0 . 430591E-01
6 -0.812780E+00 -0

.

364503E+00 -0 . 423870E-02
7 -0.800801E+00 -0

.

345997E+00 0.959411E-02
8 -0.415861E+00 -0.859055E-01 0.510140E-01
9 0.000000E+00 O.000OOOE+0O 0.000000E+00
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OPTIMIZATION #13

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 180.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
No of Design Var: 18 No of Elements: 8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom. ... 27
Length per Element 12.4858
Number of Iterations 2

C) Structure Loading:
FX 160 00.0000
FY 0.0000
FM 1000.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 3.88833 2.61929 12.48578 10.18466
2 3.06710 1.88559 12.48578 5.78328
3 0.92232 0.26590 12.48578 0.24524
4 2.98689 1.21410 12.48578 3.62638
5 3.00467 1.32694 12.48578 3.98700
6 1.88382 0.97124 12.48578 1.82964
7 0.67362 0.55665 12.48578 0.37497
8 1.49367 0.78025 12.48578 1.16544
9 1.67967 1.18504 12.48578 1.99048

E) Objective Function:

Total structure Volume: 265.960205

Node Normal Stress Bending Stress Total
1 536.3 51465,.6 52001.9
2 1412.3 50589,.8 52002.0
3 51994.3 96,.5 52090.8
4 4244.8 47757,.2 52002.1
5 3935.9 48065,.6 52001.5
6 4523.6 47478,.1 52001.8
7 4413.4 47572,,7 51986.1
8 1855.2 50144,.8 52000.0
9 1175.7 36538,.5 37714.2

undary Conditions:
e X-Displ Y-Displ SI ope
1 1 1 1

9 1 1

Node

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 O.OOOOO0E+00 O.OOOOOOE+00 0.000000E+00
2 0.892425E-01 -0 . 174556E-01 -0

.

128954E-01
3 0.527041E+00 -0

.

307447E+00 -0 . 566398E-01
4 0.833359E+00 -0

.

758307E+00 -0 . 176816E-01
5 0.862231E+00 -0 . 894399E+00 -0 . 436349E-02
6 0.880363E+00 -0 . 814806E+00 0.140516E-01
7 0.117817E+01 -0.368085E+00 0.590398E-01
8 0.168336E+01 -0 . 291622E-01 0.222087E-01
9 0.182676E+01 . 000000E+00 0.000000E+00
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OPTIMIZATION #13a

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 180.000
Arch Radius: 32.000
No of Design Var: 18

Youngs Modulus:
Yield Strength:
No of Elements:

30000000.0
52000.0

8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom. ... 27
Length per Element 12.4858
Number of Iterations 2

C) Structure Loading:
FX 16000.0000
FY 0.0000
FM 1000.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 5.58951 1.27357 12.48578 7.11864
2 5.10116 0.69418 12.48578 3.54110
3 1.56517 0.15652 12.48578 0.24497
4 4.38397 0.58589 12.48578 2.56854
5 4.63376 0.58228 12.48578 2.69813
6 3.27838 0.34568 12.48578 1.13328
7 1.61894 0.16189 12.48578 0.26210
8 2.57960 0.25796 12.48578 0.66544
9 2.91537 0.29154 12.48578 0.84994

E) Objective Function:

Total structure Volume: 175.647415

Node Normal Stress
1 765.7
2 2303.6
3 52019.3
4 5991.5
5 5816.0
6 7301.1
7 6284.3
8 3234.0
9 2740.5

Bending Stress
51234.1
49696.1

211.4
46008.2
46183.7
44698.3
35672.9
48765.9
47790.4

Total
51999.8
51999.8
52230
51999
51999
51999
41957
51999
50530

F) Boundary Conditions
Node X-Displ

1 1

9

G) Solution Vector:

Y-Displ
1

1

Slope

Node
1

2

3

4

5

6

7

8

9

X-Displ
O0O0OOE+0O
563288E-01
.306688E+00
.481161E+00
.497296E+00
.513184E+00
.666860E+00
.932019E+00
.102734E+01

Y-Dis
00000
10764
.17421
.42541
.49344
.43126
.19968
.20269
.00000

Pi
OE+00
7E-01
4E+00
0E+00
1E+00
8E + 00
6E+00
2E-01
OE+00

Slope
000000E+00
813259E-02
318503E-01
977707E-02
126135E-02
955349E-02
,294584E-01
.147632E-01
.000000E+00

178



OPTIMIZATION #14

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 180.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
No of Design Var: 18 No of Elements: 8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom. ... 27

Length per Element 12.4858
Number of iterations 2

C) Structure Loading:
FX 9000.0000
FY -5000.0000
FM 1000.0000
FA 0.0000

D) Elemental Dimensions and Stress Distribution:
Node Height Base Length Area

1 2.36812 1.89649 12.48578 4.49111
2 0.84905 0.08490 12.48578 0.07209
3 3.71044 0.71004 12.48578 2.63458
4 3.05720 0.50168 12.48578 1.53373
5 1.56758 0.15986 12.48578 0.25059
6 2.11368 0.60867 12.48578 1.28654
7 2.28870 0.73028 12.48578 1.67139
8 2.09919 0.65663 12.48578 1.37838
9 0.85662 0.28601 12.48578 0.24500

E) Objective Function:

Total structure Volume: 121.283012

Node 1formal Stress Bending Stress Total
1 251.3 48722.1 48973.4
2 18883.4 33152.8 52036.2
3 422.4 51577.1 51999.5
4 831.1 51168.1 51999.1
5 9637.3 42361.6 51998.9
6 2478.0 49521.0 51998.9
7 2079.4 49920.1 51999.5
8 2346.2 49653.4 51999.6
9 12165.1 0.2 12165.3

Bound ary Conditions

:

Node X -Displ Y--Displ Slop<a

1 1 1 1
9 1 1

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 0.0OO000E+O0 0.000OO0E+0O . 000000E+00
2 0.427757E+00 -0 . 853866E-01 -0

.

525055E-01
3 0.819383E+00 -0

.

346183E+00 -0 . 786212E-02
4 0.822885E+00 -0 . 351655E+00 0.527751E-02
5 0.767984E+00 -0 . 809962E-01 0.313859E-01
6 0.828458E+00 . 2 31809E + 00 0.108871E-01
7 0.841128E+00 . 252532E+00 -0

.

809329E-02
8 0.653208E+00 . 128115E + 00 -0 . 271114E-01
9 0.000000E+00 0.000000E+00 -0

.

6641 33E-01
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OPTIMIZATION #15a

OPTIMIZATION SOLUTION

A) Problem Parameters:
Arch Angle : 180.000
Arch Radius: 32.000
No of Design Var: 18

Youngs Modulus:
Yield Strength:
No of Elements:

30000000.0
52000.0

8

B) Derived Constants:
No of System Nodal Points... 9

No of Degrees of Freedom. ... 27
Length per Element 12.4858
Number of Iterations 2

C) Structure Loading:
FX 0.0000
FY 32000.0000
FM 1000.0000
FA 100.0000

D) Elemental Dimensions and Stress Distribution:
e Height Base Length Area
1 3.25280 2.04372 12.48578 6.64780
2 3.20982 1.57865 12.48578 5.06717
3 1.05585 0.53193 12.48578 0.56164
4 3.45172 1.93749 12.48578 6.68769
5 4.53938 2.40127 12.48578 10.90026
6 3.87991 2.04928 12.48578 7.95104
7 2.87337 1.82061 12.48578 5.23130
8 1.78269 1.33703 12.48578 2.38351
9 1.43268 1.44887 12.48578 2.07577

E) Objective Function:

Total structure Volume: 516.579224

Node Normal Stress
1 3235.7
2 3969.0
3 28718.2
4 1520.8
5 574.6
6 1021.3
7 2359.0
8 6361.0
9 7781.0

Bending Stress
48783.9
48027.9
2630.5
50476.2
51424.1
50976.6
49638.0
45636.9

0.1

Total
52019.6
51996.9
31348.8
51997.0
51998.7
51997.8
51997.0
51998.0
7781.1

F) Boundary Conditions:
Node X-Displ

1 1

9

G) Solution Vector:
Node X-Displ

1 0.00OO00E+00
2 -0.800741E-01
3 -0.427959E+00
4 -0.654608E+00
5 -0.666896E+00
6 -0.682870E+00
7 -0.811784E+00
8 -0.118582E+01
9 -0.183804E+01

Y-Displ
1

1

Slope

Y-Di
0000
1748
2540
5969
6603
,5787
3846
1327
0000

spl
00E+00
74E-01
98E+00
50E+00
97E+00
87E+00
49E+00
94E+00
00E+00

Slo
0000
1250
4432
1006
1088
1141
2437
4401
,5795

pe
00E+00
50E-01
18E-01
03E-01
17E-02
77E-01
21E-01
23E-01
55E-01
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